Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Baird is active.

Publication


Featured researches published by Lisa Baird.


Nature Genetics | 1997

A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy

Rando Allikmets; Nanda A. Singh; Hui Sun; Noah F. Shroyer; Amy Hutchinson; Abirami Chidambaram; Bernard Gerrard; Lisa Baird; Dora Stauffer; Andy Peiffer; Amir Rattner; Yixin Li; Kent L. Anderson; Richard Alan Lewis; Jeremy Nathans; M. Leppert; Michael Dean; James R. Lupski

Stargardt disease (STGD, also known as fundus flavimaculatus; FFM) is an autosomal recessive retinal disorder characterized by a juvenile-onset macular dystrophy, alterations of the peripheral retina, and subretinal deposition of lipofuscin-like material. A gene encoding an ATP-binding cassette (ABC) transporter was mapped to the 2-cM (centiMorgan) interval at 1p13-p21 previously shown by linkage analysis to harbour the STGD gene. This gene, ABCR, is expressed exclusively and at high levels in the retina, in rod but not cone photoreceptors, as detected by in situ hybridization. Mutational analysis of ABCR in STGD families revealed a total of 19 different mutations including homozygous mutations in two families with consanguineous parentage. These data indicate that ABCR is the causal gene of STGD/FFM.


PLOS Genetics | 2008

A Candidate Gene Approach Identifies the CHRNA5-A3-B4 Region as a Risk Factor for Age-Dependent Nicotine Addiction

Robert B. Weiss; Timothy B. Baker; Dale S. Cannon; Andrew von Niederhausern; Diane M. Dunn; Nori Matsunami; Nanda A. Singh; Lisa Baird; Hilary Coon; William M. McMahon; Megan E. Piper; Michael C. Fiore; Mary Beth Scholand; John E. Connett; Richard E. Kanner; Lorise C. Gahring; Scott W. Rogers; John R. Hoidal; M. Leppert

People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction—measured by the Fagerstrom Test of Nicotine Dependence—in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight α and three β nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0×10−5; odds ratio = 1.82; 95% confidence interval 1.39–2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.


European Journal of Human Genetics | 2008

Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program

Georg B. Ehret; Alanna C. Morrison; Ashley O'Connor; Megan L. Grove; Lisa Baird; Karen Schwander; Alan B. Weder; Richard S. Cooper; D. C. Rao; Steven C. Hunt; Eric Boerwinkle; Aravinda Chakravarti

Essential hypertension is a principal cardiovascular risk factor whose origin remains unknown. Classical genetic studies have shown that blood pressure is at least partially heritable, opening a window to understanding the pathophysiology of essential hypertension in the human using modern genetic tools. The Wellcome Trust Case Control Consortium has recently published the results of screening the genomes of 2000 essential hypertension cases and 3000 controls using 500 000 genome-wide single nucleotide polymorphisms (SNPs). None of the variants proved to be genome-wide significant after correction for multiple tests but the most significantly associated SNPs (P<10−5) constitute a priority list that warrant follow-up in other studies. We describe here replication studies of the top six SNPs in subjects from the US National Heart, Lung, and Blood Institute funded Family Blood Pressure Program comprising 11 433 individuals recruited by hypertensive families. The results suggest that only one of the six SNPs might be associated with essential hypertension in Americans of European origin. This SNP shows a significant but opposite effect in Americans of Hispanic origin and no association in African Americans. The significance of the opposing effect estimates is unclear. No replication could be shown for hypertension status, but there are differences in study design. This attempted replication highlights that essential hypertension studies will require more comprehensive and larger genetic screens.


PLOS ONE | 2013

Identification of Rare Recurrent Copy Number Variants in High-Risk Autism Families and Their Prevalence in a Large ASD Population

Nori Matsunami; Dexter Hadley; Charles H. Hensel; G. Bryce Christensen; Cecilia Kim; Edward C. Frackelton; Kelly Thomas; Renata Pellegrino da Silva; Jeff Stevens; Lisa Baird; Brith Otterud; Karen Ho; Tena Varvil; Tami Leppert; Christophe G. Lambert; M. Leppert; Hakon Hakonarson

Structural variation is thought to play a major etiological role in the development of autism spectrum disorders (ASDs), and numerous studies documenting the relevance of copy number variants (CNVs) in ASD have been published since 2006. To determine if large ASD families harbor high-impact CNVs that may have broader impact in the general ASD population, we used the Affymetrix genome-wide human SNP array 6.0 to identify 153 putative autism-specific CNVs present in 55 individuals with ASD from 9 multiplex ASD pedigrees. To evaluate the actual prevalence of these CNVs as well as 185 CNVs reportedly associated with ASD from published studies many of which are insufficiently powered, we designed a custom Illumina array and used it to interrogate these CNVs in 3,000 ASD cases and 6,000 controls. Additional single nucleotide variants (SNVs) on the array identified 25 CNVs that we did not detect in our family studies at the standard SNP array resolution. After molecular validation, our results demonstrated that 15 CNVs identified in high-risk ASD families also were found in two or more ASD cases with odds ratios greater than 2.0, strengthening their support as ASD risk variants. In addition, of the 25 CNVs identified using SNV probes on our custom array, 9 also had odds ratios greater than 2.0, suggesting that these CNVs also are ASD risk variants. Eighteen of the validated CNVs have not been reported previously in individuals with ASD and three have only been observed once. Finally, we confirmed the association of 31 of 185 published ASD-associated CNVs in our dataset with odds ratios greater than 2.0, suggesting they may be of clinical relevance in the evaluation of children with ASDs. Taken together, these data provide strong support for the existence and application of high-impact CNVs in the clinical genetic evaluation of children with ASD.


American Journal of Human Genetics | 1999

Delineation of the critical interval of Bardet-Biedl syndrome 1 (BBS1) to a small region of 11q13, through linkage and haplotype analysis of 91 pedigrees.

Nicholas Katsanis; Richard Alan Lewis; David W. Stockton; Phuong M. T. Mai; Lisa Baird; Pl Beales; M. Leppert; James R. Lupski

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous recessive disease characterized primarily by atypical retinitis pigmentosa, obesity, polydactyly, hypogenitalism, and mental retardation. Despite the presence of at least five loci in the human genome, on chromosomes 2q, 3p, 11q, 15q and 16q, as many as 50% of the mutations appear to map to the BBS1 locus on 11q13. The recessive mode of inheritance and the genetic heterogeneity of the syndrome, as well as the inability to distinguish between different genetic loci by phenotypic analyses, have hindered efforts to delineate the 11q13 region as a first step toward cloning the mutated gene. To circumvent these difficulties, we collected a large number of BBS pedigrees of primarily North American and European origin and performed genetic analysis, using microsatellites from all known BBS genomic regions. Heterogeneity analysis established a 40.5% contribution of the 11q13 locus to BBS, and haplotype construction on 11q-linked pedigrees revealed several informative recombinants, defining the BBS1 critical interval between D11S4205 and D11S913, a genetic distance of 2.9 cM, equivalent to approximately 2.6 Mb. Loss of identity by descent in two consanguineous pedigrees was also observed in the region, potentially refining the region to 1.8 Mb between D11S1883 and D11S4944. The identification of multiple recombinants at the same position forms the basis for physical mapping efforts, coupled with mutation analysis of candidate genes, to identify the gene for BBS1.


PLOS ONE | 2016

Demonstration of protein-based human identification using the hair shaft proteome

Glendon Parker; Tami Leppert; Deon Anex; Jonathan K. Hilmer; Nori Matsunami; Lisa Baird; Jeffery Stevens; Krishna Parsawar; Blythe Durbin-Johnson; David M. Rocke; Chad C. Nelson; Daniel J. Fairbanks; Andrew S. Wilson; Robert H. Rice; Scott Woodward; Brian Bothner; Bradley R. Hart; M. Leppert

Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.


Molecular Autism | 2014

Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population.

Nori Matsunami; Charles H. Hensel; Lisa Baird; Jeff Stevens; Brith Otterud; Tami Leppert; Tena Varvil; Dexter Hadley; Joseph T. Glessner; Renata Pellegrino; Cecilia Kim; Kelly Thomas; Fengxiang Wang; Frederick G. Otieno; Karen Ho; Gerald B Christensen; Dongying Li; Rytis Prekeris; Christophe G. Lambert; Hakon Hakonarson; M. Leppert

BackgroundGenetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken.MethodsWe identified haplotypes shared among individuals with ASDs in large multiplex families, followed by targeted DNA capture and sequencing to identify potential causal variants. We also assayed the prevalence of the identified variants in a large ASD case/control population.ResultsWe identified 584 non-conservative missense, nonsense, frameshift and splice site variants that might predispose to autism in our high-risk families. Eleven of these variants were observed to have odds ratios greater than 1.5 in a set of 1,541 unrelated children with autism and 5,785 controls. Three variants, in the RAB11FIP5, ABP1, and JMJD7-PLA2G4B genes, each were observed in a single case and not in any controls. These variants also were not seen in public sequence databases, suggesting that they may be rare causal ASD variants. Twenty-eight additional rare variants were observed only in high-risk ASD families. Collectively, these 39 variants identify 36 genes as ASD risk genes. Segregation of sequence variants and of copy number variants previously detected in these families reveals a complex pattern, with only a RAB11FIP5 variant segregating to all affected individuals in one two-generation pedigree. Some affected individuals were found to have multiple potential risk alleles, including sequence variants and copy number variants (CNVs), suggesting that the high incidence of autism in these families could be best explained by variants at multiple loci.ConclusionsOur study is the first to use haplotype sharing to identify familial ASD risk loci. In total, we identified 39 variants in 36 genes that may confer a genetic risk of developing autism. The observation of 11 of these variants in unrelated ASD cases further supports their role as ASD risk variants.


Molecular Neuropsychiatry | 2016

A Rare Variant in CACNA1D Segregates with 7 Bipolar I Disorder Cases in a Large Pedigree

Jessica Ross; Erika Gedvilaite; Carolyn Erdman; Lisa Baird; Nori Matsunami; M. Leppert; Jinchuan Xing; William Byerley

Whole-genome sequencing was performed on 3 bipolar I disorder (BPI) cases from a multiplex pedigree of European ancestry with 7 BPI cases. Within CACNA1D, a gene implicated by genome-wide association studies, a G to C nucleotide transversion at 53,835,340 base pairs (bps) was found predicting the substitution of proline for alanine at amino acid position 1751 (A1751P). Using Sanger sequencing, the DNA variant was shown to co-segregate with the remaining 4 BPI cases within the pedigree. A high-resolution DNA denaturing curve method was then used to screen for the presence of the A1751P change in 4,150 BPI cases from the NIMH Genetics Initiative. The A1751P variant was found in 4 BPI cases. A second variant within exon 43, a C to T nucleotide transition, was found in 1 case at 53,835,355 bps, predicting the substitution of tryptophan for arginine at amino acid position 1771 (R1771W). In the NHLBI Exome Sequencing Project database, the heterozygous A1751P variant was present in 3 of 4,300 subjects of European ancestry, and the R1771W change was not present in any subject. Given the rarity of these variants, large-scale case/control rare variant sequencing studies will be required for definitive conclusions.


Journal of Glaucoma | 1996

A gene for primary congenital glaucoma is not linked to the locus on chromosome 1q for autosomal dominant juvenile-onset open angle glaucoma

Kent L. Anderson; Richard Alan Lewis; Bassem A. Bejjani; Lisa Baird; Brith Otterud; Karim F. Tomey; William F. Astle; David K. Dueker; M. Leppert; James R. Lupski

BackgroundPrimary congenital glaucoma is an uncommon autosomal recessive condition that results from a developmental defect in the trabecular meshwork and anterior chamber angle, manifesting in the neonatal or infantile period with increased intraocular pressure, corneal enlargement and edema, and optic nerve cupping with consequent loss of vision. Nothing is known about its genetic location. Patients and MethodsLinkage analysis was performed in 25 primary congenital glaucoma Saudi Arabian families with six polymorphic DNA markers on chromosome lq in a region that has shown tight linkage to a locus for autosomal dominant juvenile-onset open angle glaucoma (GLC1A). Twenty-four of these families are highly consanguineous. ResultsEach family was shown separately to exclude the 8-centimorgan (cM) interval containing the GLC1A locus. Four families independently demonstrated overlapping regions of exclusion (0≤ −2) that spanned the entire 8-cM interval. Assignment of a primary congenital glaucoma locus in this region could be excluded by a cadre of 21 families because a primary congenital glaucoma disease locus did not segregate in an autosomal recessive manner on haplotypes constructed with markers in this region. For all families, no affected individuals demonstrated homozygosity of alleles in regions tightly linked to the GLC1A locus. ConclusionThese results exclude the 8-cM region on chromosome lq shown to contain the GLC1A locus from containing a disease locus for primary congenital glaucoma in this population of 25 Saudi Arabian families.


Nucleic Acids Research | 2017

Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P

Marco Mariotti; Sumangala Shetty; Lisa Baird; Sen Wu; Gary Loughran; Paul R. Copeland; John F. Atkins; Michael T. Howard

Abstract Gene-specific expansion of the genetic code allows for UGA codons to specify the amino acid selenocysteine (Sec). A striking example of UGA redefinition occurs during translation of the mRNA coding for the selenium transport protein, selenoprotein P (SELENOP), which in vertebrates may contain up to 22 in-frame UGA codons. Sec incorporation at the first and downstream UGA codons occurs with variable efficiencies to control synthesis of full-length and truncated SELENOP isoforms. To address how the Selenop mRNA can direct dynamic codon redefinition in different regions of the same mRNA, we undertook a comprehensive search for phylogenetically conserved RNA structures and examined the function of these structures using cell-based assays, in vitro translation systems, and in vivo ribosome profiling of liver tissue from mice carrying genomic deletions of 3′ UTR selenocysteine-insertion-sequences (SECIS1 and SECIS2). The data support a novel RNA structure near the start codon that impacts translation initiation, structures located adjacent to UGA codons, additional coding sequence regions necessary for efficient production of full-length SELENOP, and distinct roles for SECIS1 and SECIS2 at UGA codons. Our results uncover a remarkable diversity of RNA elements conducting multiple occurrences of UGA redefinition to control the synthesis of full-length and truncated SELENOP isoforms.

Collaboration


Dive into the Lisa Baird's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent L. Anderson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge