Lisa Baumbach
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Baumbach.
Nature Genetics | 2001
Iris Eisenberg; Nili Avidan; Tamara Potikha; Hagit Hochner; Miriam Chen; Tsviya Olender; Mark Barash; Moshe Shemesh; Menachem Sadeh; Gil Grabov-Nardini; Inna Shmilevich; Adam Friedmann; George Karpati; Walter G. Bradley; Lisa Baumbach; Doron Lancet; Edna Ben Asher; Jacques S. Beckmann; Zohar Argov; Stella Mitrani-Rosenbaum
Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12–13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12–13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.
Cancer Research | 2007
Marcelo A. Carvalho; Sylvia M. Marsillac; Rachel Karchin; Siranoush Manoukian; Scott Grist; Ramona F. Swaby; Turán P. Ürményi; Edson Rondinelli; Rosane Silva; Luis Gayol; Lisa Baumbach; Rebecca Sutphen; Jennifer L. Pickard-Brzosowicz; Katherine L. Nathanson; Andrej Sali; David E. Goldgar; Fergus J. Couch; Paolo Radice; Alvaro N.A. Monteiro
Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability.
Circulation | 2004
Todd Miller; Elicia Estrella; Robert J. Myerburg; Jocelyn Garcia de Viera; Niberto Moreno; Paolo Rusconi; Mary Ellen Ahearn; Lisa Baumbach; Paul Kurlansky; Grace S. Wolff; Nanette H. Bishopric
Background—The importance of germ-line mosaicism in genetic disease is probably underestimated, even though recent studies indicate that it may be involved in 10% to 20% of apparently de novo cases of several dominantly inherited genetic diseases. Methods and Results—We describe here a case of repeated germ-line transmission of a severe form of long-QT syndrome (LQTS) from an asymptomatic mother with mosaicism for a mutation in the cardiac sodium channel, SCN5A. A male infant was diagnosed with ventricular arrhythmias and cardiac decompensation in utero at 28 weeks and with LQTS after birth, ultimately requiring cardiac transplantation for control of ventricular tachycardia. The mother had no ECG abnormalities, but her only previous pregnancy had ended in stillbirth with evidence of cardiac decompensation at 7 months’ gestation. A third pregnancy also ended in stillbirth at 7 months, again with nonimmune fetal hydrops. The surviving infant was found to have a heterozygous mutation in SCN5A (R1623Q), previously reported as a de novo mutation causing neonatal ventricular arrhythmia and LQTS. Initial studies of the mother detected no genetic abnormality, but a sensitive restriction enzyme–based assay identified a small (8% to 10%) percentage of cells harboring the mutation in her blood, skin, and buccal mucosa. Cord blood from the third fetus also harbored the mutant allele, suggesting that all 3 cases of late-term fetal distress resulted from germ-line transfer of the LQTS-associated mutation. Conclusions—Recurrent late-term fetal loss or sudden infant death can result from unsuspected parental mosaicism for LQTS-associated mutations, with important implications for genetic counseling.
Arthritis & Rheumatism | 1998
Lisa G. Rider; Rebecca C. Gurley; Janardan P. Pandey; Ignacio García-De La Torre; Apostolos E. Kalovidouris; Terrance P. O'Hanlon; Lori A. Love; Raoul C. M. Hennekam; Lisa Baumbach; Hans E. Neville; Carlos A. Garcia; Jeffrey Klingman; Michael Gibbs; Michael H. Weisman; Ira N. Targoff; Frederick W. Miller
OBJECTIVE To describe the clinical, serologic, and immunogenetic features of familial idiopathic inflammatory myopathy (IIM) and to compare these with the features of sporadic IIM. METHODS Clinical signs and symptoms, autoantibodies, HLA-DRB1 and DQA1 alleles, and GM/KM phenotypes were compared among 36 affected and 28 unaffected members of 16 unrelated families in which 2 or more blood relatives developed an IIM. In addition, findings in patients with familial IIM were compared with those in 181 patients with sporadic IIM. The families included 3 pairs of monozygotic twins with juvenile dermatomyositis, 11 families with other siblings or relatives with polymyositis or dermatomyositis, and 2 families with inclusion body myositis. RESULTS The clinical features of familial IIM were similar to those of sporadic IIM, although the frequency of myositis-specific autoantibodies was lower in familial than in sporadic IIM. DRB1*0301 was a common genetic risk factor for familial and sporadic IIM, but contributed less to the genetic risk of familial IIM (etiologic fraction 0.35 versus 0.51 in sporadic IIM). Homozygosity at the HLA-DQA1 locus was found to be a genetic risk factor unique to familial IIM (57% versus 24% of controls; odds ratio 4.2, corrected P = 0.002). CONCLUSION These findings emphasize that 1) familial muscle weakness is not always due to inherited metabolic defects or dystrophies, but may be the result of the development of IIM in several members of the same family, and 2) multiple genetic factors are likely important in the etiology and disease expression of familial IIM, as is also the case for sporadic myositis, but DQA1 homozygosity is a distinct risk factor for familial IIM.
Neurology | 1992
Hans E. Neville; Lisa Baumbach; Steven P. Ringel; L. S. Russo; E. Sujansky; Carlos A. Garcia
We report a kindred manifesting clinical features and muscle biopsy findings of inclusion body myositis (IBM). In this family, multiple members were affected in two generations with direct male-to-male and female-to-male transmission. This is the first reported instance of autosomal dominant inheritance in IBM, which usually occurs sporadically or, rarely, may be transmitted as an autosomal recessive disorder.
American Journal of Human Genetics | 1999
Mefford Hc; Lisa Baumbach; Ramesh K. Panguluri; Carolyn Whitfield‐Broome; Csilla I. Szabo; Selena Smith; Mary Claire King; Georgia M. Dunston; Dominique Stoppa-Lyonnet; Fernando Arena
This study was supported by National Institutes of Health grants CA27632, CA55772, and RR03048, by U.S. Department of Defense grant 17-94-J4245, and by grants from the Komen Foundation and the Sylvester Comprehensive Cancer Center Developmental Program.
Genes, Chromosomes and Cancer | 1999
Rina Wu; Catalina López-Correa; J. Lynn Rutkowski; Lisa Baumbach; Thomas W. Glover; Eric Legius
We have analyzed 98.5% of the coding region of the NF1 gene at the cDNA level in seven NF1 patients who developed malignant peripheral nerve sheath tumors. Seven germline mutations were detected in six individuals: a 6‐bp in‐frame deletion in exon 28, a splice acceptor mutation in intron 31 resulting in a premature stop of translation, a missense mutation in exon 38, and three total NF1 gene deletions. In one of the patients with a total NF1 gene deletion, a missense mutation in exon 16 on the other NF1 allele was detected. These data indicate that NF1 patients developing malignant neoplasms can have any type of NF1 germline mutation such as a total gene deletion, a frameshift mutation, an in‐frame deletion, or a missense mutation. We conclude that in our series no specific type of NF1 germline mutation was found in NF1 individuals with malignancies, but that large NF1 gene deletions were more frequently found in this group than reported for the general population of NF1 individuals. Genes Chromosomes Cancer 26:376–380, 1999.
Movement Disorders | 2005
Spiridon Papapetropoulos; Roberto Lopez-Alberola; Lisa Baumbach; Arnp Angela Russell PhD; Manuel A. Gonzalez; Brian C. Bowen; Carlos Singer
We describe and present a video of a patient with maternally inherited juvenile Huntingtons disease (HD) caused by a very large (108‐repeat) expansion. Maternally transmitted very large trinucleotide repeats (>100) are extremely rare in juvenile HD and may represent instability during female gametogenesis.
Human Mutation | 1998
Sofia Krkljus; C. R. Abernathy; Jennifer Johnson; Charles A. Williams; Daniel J. Driscoll; Roberto T. Zori; Heather J. Stalker; Sonja A. Rasmussen; Francis S. Collins; Boris G. Kousseff; Lisa Baumbach; Margaret R. Wallace
We analyzed by SSCP the complete IRS-1 coding sequence in NIDDM patient #25 D. Unique conformers corresponding to a Ser to Tyr substitution at codon 1043 (S1043Y), and to a Cys to Tyr substitution at codon 1095 (C1095Y) were detected in this patient. The results of sequential digestion with restriction enzymes indicated that the novel sequence variants segregate on the same allele. Relatives of patient #25 D were not available for study, to confirm segregation of the novel allele with NIDDM in the family. Several lines of evidence suggest that the non-conservative amino acid substitutions detected in NIDDM patient #25 D have the potential to affect IRS-1 functions and could play a pathogenic role in this patient. Both S1043Y and C1095Y occur in a highly conserved sequence from human skeletal muscle, human hepatoma, mouse, and rat IRS-1. Protein subsequence analysis revealed that the S1043Y substitution abolishes a consensus sequence for glycogen synthase kinase 3 phosphorylation. Furthermore, S1043Y and C1095Y are not common IRS-1 polymorphisms as they were detected only in 1/136 choromosomes from NIDDM patients (allele frequency in NIDDM patients = 0.0007) and in 0/120 chromosomes from control subjects.Neurofibromatosis type 1 (NF1) is a dominant disorder caused by mutations in the NF1 gene; approximately 100 NF1 gene mutations have been published. The CpG C‐to‐T transition is a frequent mutation mechanism in genetic disorders. To estimate its frequency in NF1, we employed a PCR‐restriction digestion method to examine 17 CpGs in 65 patients, and also screened for a CpG nonsense transition (R1947X) that occurs in 1‐2% of patients. The analysis revealed disease‐related CpG C‐to‐T transitions (including a nonsense mutation that may be as frequent as R1947X) as well as a benign variant and another mutation at a CpG. Four patients showed CpG mutations in analysis of 18 sites (17 surveyed by restriction digest, plus the R1947X assay), including three C‐to‐T transitions and one C‐to‐G transversion. These 18 sites represent one‐fifth of the 91 CpGs at which a C‐to‐T transition would result in a nonsense or nonconservative missense mutation. Thus, it is feasible that the CpG mutation rate at NF1 might be similar to that seen in other disorders with a high mutation rate, and that recurrent NF1 mutations may frequently reside at CpG sites. Hum Mutat 11:411, 1998.
Human Mutation | 1998
Krkljus S; C. R. Abernathy; Jennifer Johnson; Charles A. Williams; Daniel J. Driscoll; Roberto T. Zori; Heather J. Stalker; Sonja A. Rasmussen; Francis S. Collins; Boris G. Kousseff; Lisa Baumbach; Margaret R. Wallace
We analyzed by SSCP the complete IRS-1 coding sequence in NIDDM patient #25 D. Unique conformers corresponding to a Ser to Tyr substitution at codon 1043 (S1043Y), and to a Cys to Tyr substitution at codon 1095 (C1095Y) were detected in this patient. The results of sequential digestion with restriction enzymes indicated that the novel sequence variants segregate on the same allele. Relatives of patient #25 D were not available for study, to confirm segregation of the novel allele with NIDDM in the family. Several lines of evidence suggest that the non-conservative amino acid substitutions detected in NIDDM patient #25 D have the potential to affect IRS-1 functions and could play a pathogenic role in this patient. Both S1043Y and C1095Y occur in a highly conserved sequence from human skeletal muscle, human hepatoma, mouse, and rat IRS-1. Protein subsequence analysis revealed that the S1043Y substitution abolishes a consensus sequence for glycogen synthase kinase 3 phosphorylation. Furthermore, S1043Y and C1095Y are not common IRS-1 polymorphisms as they were detected only in 1/136 choromosomes from NIDDM patients (allele frequency in NIDDM patients = 0.0007) and in 0/120 chromosomes from control subjects.Neurofibromatosis type 1 (NF1) is a dominant disorder caused by mutations in the NF1 gene; approximately 100 NF1 gene mutations have been published. The CpG C‐to‐T transition is a frequent mutation mechanism in genetic disorders. To estimate its frequency in NF1, we employed a PCR‐restriction digestion method to examine 17 CpGs in 65 patients, and also screened for a CpG nonsense transition (R1947X) that occurs in 1‐2% of patients. The analysis revealed disease‐related CpG C‐to‐T transitions (including a nonsense mutation that may be as frequent as R1947X) as well as a benign variant and another mutation at a CpG. Four patients showed CpG mutations in analysis of 18 sites (17 surveyed by restriction digest, plus the R1947X assay), including three C‐to‐T transitions and one C‐to‐G transversion. These 18 sites represent one‐fifth of the 91 CpGs at which a C‐to‐T transition would result in a nonsense or nonconservative missense mutation. Thus, it is feasible that the CpG mutation rate at NF1 might be similar to that seen in other disorders with a high mutation rate, and that recurrent NF1 mutations may frequently reside at CpG sites. Hum Mutat 11:411, 1998.