Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Borghesi is active.

Publication


Featured researches published by Lisa Borghesi.


Journal of Immunology | 2011

Chronic Exposure to a TLR Ligand Injures Hematopoietic Stem Cells

Brandt L. Esplin; Tomoyuki Shimazu; Robert S. Welner; Karla P. Garrett; Lei Nie; Qingzhao Zhang; Mary Beth Humphrey; Qi Yang; Lisa Borghesi; Paul W. Kincade

Hematopoietic stem cells (HSC) can be harmed by disease, chemotherapy, radiation, and normal aging. We show in this study that damage also occurs in mice repeatedly treated with very low doses of LPS. Overall health of the animals was good, and there were relatively minor changes in marrow hematopoietic progenitors. However, HSC were unable to maintain quiescence, and transplantation revealed them to be myeloid skewed. Moreover, HSC from treated mice were not sustained in serial transplants and produced lymphoid progenitors with low levels of the E47 transcription factor. This phenomenon was previously seen in normal aging. Screening identified mAbs that resolve HSC subsets, and relative proportions of these HSC changed with age and/or chronic LPS treatment. For example, minor CD150HiCD48− populations lacking CD86 or CD18 expanded. Simultaneous loss of CD150Lo/−CD48− HSC and gain of the normally rare subsets, in parallel with diminished transplantation potential, would be consistent with age- or TLR-related injury. In contrast, HSC in old mice differed from those in LPS-treated animals with respect to VCAM-1 or CD41 expression and lacked proliferation abnormalities. HSC can be exposed to endogenous and pathogen-derived TLR ligands during persistent low-grade infections. This stimulation might contribute in part to HSC senescence and ultimately compromise immunity.


Blood | 2008

Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection

Robert S. Welner; Rosana Pelayo; Yoshinori Nagai; Karla P. Garrett; Todd Wuest; Daniel J. J. Carr; Lisa Borghesi; Michael A. Farrar; Paul W. Kincade

Hematopoietic stem and progenitor cells were previously found to express Toll-like receptors (TLRs), suggesting that bacterial/viral products may influence blood cell formation. We now show that common lymphoid progenitors (CLPs) from mice with active HSV-1 infection are biased to dendritic cell (DC) differentiation, and the phenomenon is largely TLR9 dependent. Similarly, CLPs from mice treated with the TLR9 ligand CpG ODN had little ability to generate CD19+ B lineage cells and had augmented competence to generate DCs. TNFalpha mediates the depletion of late-stage lymphoid progenitors from bone marrow in many inflammatory conditions, but redirection of lymphopoiesis occurred in TNFalpha-/- mice treated with CpG ODN. Increased numbers of DCs with a lymphoid past were identified in Ig gene recombination substrate reporter mice treated with CpG ODN. TLR9 is highly expressed on lymphoid progenitors, and culture studies revealed that those receptors, rather than inflammatory cytokines, accounted for the production of several types of functional DCs. Common myeloid progenitors are normally a good source of DCs, but this potential was reduced by TLR9 ligation. Thus, alternate differentiation pathways may be used to produce innate effector cells in health and disease.


Nature Immunology | 2009

Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing

Kathleen Martincic; Serkan A. Alkan; Alys Cheatle; Lisa Borghesi; Christine Milcarek

Immunoglobulin secretion is modulated by competition between the use of a weak promoter-proximal poly(A) site and a nonconsensus splice site in the final secretory-specific exon of the heavy chain pre-mRNA. The RNA polymerase II transcription elongation factor ELL2, which is induced in plasma cells, enhanced both polyadenylation and exon skipping with the gene encoding the immunoglobulin heavy-chain complex (Igh) and reporter constructs. Lowering ELL2 expression by transfection of heterogenous ribonucleoprotein F (hnRNP F) or small interfering RNA resulted in lower abundance of secretory-specific forms of immunoglobulin heavy-chain mRNA. ELL2 and the polyadenylation factor CstF-64 tracked together with RNA polymerase II across the Igh μ- and γ-gene segments; the association of both factors was blocked by ELL2-specific small interfering RNA. Thus, loading of ELL2 and CstF-64 on RNA polymerase II was linked, caused enhanced use of the proximal poly(A) site and was necessary for processing of immunoglobulin heavy-chain mRNA.


Journal of Experimental Medicine | 2005

E47 is required for V(D)J recombinase activity in common lymphoid progenitors.

Lisa Borghesi; Jennifer Aites; Shakira Nelson; Preslav Lefterov; Pamela James; Rachel M. Gerstein

Common lymphoid progenitors (CLPs) are the first bone marrow precursors in which V(D)J recombinase activity is up-regulated. Here, we show that loss of the transcription factor E47 produces a reduced CLP population that lacks V(D)J recombinase activity and D-JH rearrangements in vivo. Apart from a profound arrest before the pro–B cell stage, other downstream lymphoid progeny of CLPs are still intact in these mice albeit at reduced numbers. In contrast to the inhibition of recombinase activity in early B lineage precursors in E47-deficient animals, loss of either E47 or its cis-acting target Erag (enhancer of rag transcription) has little effect on recombinase activity in thymic T lineage precursors. Taken together, this work defines a role for E47 in regulating lineage progression at the CLP stage in vivo and describes the first transcription factor required for lineage-specific recombinase activity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A differentiation pathway for B1 cells in adult bone marrow

Brandt L. Esplin; Robert S. Welner; Qingzhao Zhang; Lisa Borghesi; Paul W. Kincade

The recent description of a Lin−AA4.1+CD19+B220Lo/− B1-specified progenitor (B1P) population in adult marrow adds support for the argument that these unique B cells arise from a distinct lineage. However, the origins of B1P were not investigated and their developmental relationships to conventional B2 cells remain unclear. We now report that B1P development is IL-7Rα-dependent, and negatively regulated by Bruton tyrosine kinase. Lymphoid characteristics of B1P were further studied with recombination activating gene (RAG)-1/GFP knock-in, RAG-1/Cre reporter, and VEX transgenic mice. Our results reveal that they are heterogeneous with respect to lymphocyte affiliation. RAG-1+ early lymphoid progenitors and Lin−Sca-1+cKitLoIL-7Rα+ common lymphoid progenitors from adult marrow efficiently generated CD19+CD45R/B220Lo/− cells in vitro and in vivo. Moreover, early lymphoid progenitors and common lymphoid progenitors produced significant numbers of peritoneal CD11b+CD5+ B1a and CD11b+CD5− B1b cells in vivo. Finally, 2-step transplantation experiments established a differentiation pathway between conventional lymphoid progenitors, B1P, and mature B1 lymphocytes. Thus, our findings indicate that at least some B1P can be produced in adult bone marrow from primitive B2 progenitors, and suggest a developmental relationship between the major categories of B lymphocytes.


Journal of Immunology | 2008

E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors.

Qi Yang; Lela Kardava; Anthony J. St. Leger; Kathleen Martincic; Barbara Varnum-Finney; Irwin D. Bernstein; Christine Milcarek; Lisa Borghesi

Little is known about the transcriptional regulators that control the proliferation of multipotent bone marrow progenitors. Understanding the mechanisms that restrict proliferation is of significant interest since the loss of cell cycle integrity can be associated with hematopoietic exhaustion, bone marrow failure, or even oncogenic transformation. Herein, we show that multipotent LSKs (lineage−Scahighc-kit+) from E47-deficient mice exhibit a striking hyperproliferation associated with a loss of cell cycle quiescence and increased susceptibility to in vivo challenge with a mitotoxic drug. Total LSKs contain long-term self-renewing hematopoietic stem cells and downstream multipotential progenitors (MPPs) that possess very limited or no self-renewal ability. Within total LSKs, we found specific developmental and functional deficits in the MPP subset. E47 knockout mice have grossly normal numbers of self-renewing hematopoietic stem cells but a 50–70% reduction in nonrenewing MPPs and downstream lineage-restricted populations. The residual MPPs in E47 knockout mice fail to fully up-regulate flk2 or initiate V(D)J recombination, hallmarks of normal lymphoid lineage progression. Consistent with the loss of normal cell cycle restraints, we show that E47-deficient LSKs have a 50% decrease in p21, a cell cycle inhibitor and known regulator of LSK proliferation. Moreover, enforced expression studies identify p21 as an E47 target gene in primary bone marrow LSKs. Thus, E47 appears to regulate the developmental and functional integrity of early hematopoietic subsets in part through effects on p21-mediated cell cycle quiescence.


Cytokine | 2012

Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells

Julie R. Boiko; Lisa Borghesi

Hematopoietic stem cells (HSCs) repopulate the immune system during normal replenishment as well as under the burden of pathogen stress, but the respective outcomes of differentiation are not the same. Under homeostatic conditions such as those which accompany turnover of immune cell subsets, HSCs appear to co-equally prime genes associated with the major downstream lineages: lymphoid, myeloid, and megakaryocyte/erythroid. Recent studies reveal, however, that during pathogen exposure, hematopoiesis may yield progeny in proportions different than those produced under homeostasis. At least some of these effects may be due to pathogen engagement of Toll-like receptors (TLRs) expressed on HSCs. HSCs are also responsive to inflammatory cytokines that are produced in response to pathogen burden and are present in the bone marrow microenvironment. Thus, hematopoiesis is not a formulaic process that produces the same, predictable outcome regardless of the specific environmental context. Rather, hematopoiesis represents a dynamic biological system that can be appreciably responsive to environmental factors, an influence that extends to the level of the HSC itself. Knowledge of functional consequences of TLR ligation on HSCs may be therapeutically exploited and applied to treatment of hematopoietic insufficiency in the setting of infection and disease.


Blood | 2009

C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

Rekha Pal; Martin Janz; Deborah L. Galson; Margarete Gries; Shirong Li; Korinna Jöhrens; Ioannis Anagnostopoulos; Bernd Dörken; Markus Y. Mapara; Lisa Borghesi; Lela Kardava; G. D. Roodman; Christine Milcarek; Suzanne Lentzsch

CCAAT/enhancer-binding protein beta (C/EBPbeta), also known as nuclear factor-interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPbeta show impaired generation of B lymphocytes. We show that C/EBPbeta regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPbeta, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPbeta. Silencing of C/EBPbeta led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPbeta led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPbeta directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPbeta is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPbeta may provide a novel therapeutic strategy in the treatment of multiple myeloma.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

Abbe N. Vallejo; Joshua J. Michel; Laurie K. Bale; Bonnie Lemster; Lisa Borghesi; Cheryl A. Conover

Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging.


Journal of Immunology | 2008

The ontogeny and fate of NK cells marked by permanent DNA rearrangements.

Kristy Pilbeam; Per H. Basse; Laurent Brossay; Nikola L. Vujanovic; Rachel M. Gerstein; Abbe N. Vallejo; Lisa Borghesi

A subset of NK cells bears incomplete V(D)J rearrangements, but neither the consequence to cell activities nor the precise developmental stages in which recombination occurs is known. These are important issues, as recombination errors cause cancers of the B and T lineages. Using transgenic recombination reporter mice to examine NK cell dynamics in vivo, we show that recombination+ NK cells have distinct developmental patterns in the BM, including reduced homeostatic proliferation and diminished Stat5 phosphorylation. In the periphery, both recombination+ and recombination− NK cells mediate robust functional responses including IFN-γ production, cytolysis, and tumor homing, suggesting that NK cells with distinct developmental histories can be found together in the periphery. We also show that V(D)J rearrangement marks both human cytolytic (CD56dim) and immunoregulatory (CD56bright) populations, demonstrating the distribution of permanent DNA rearrangements across major NK cell subsets in man. Finally, direct quantification of rag transcripts throughout NK cell differentiation in both mouse and man establishes the specific developmental stages that are susceptible to V(D)J rearrangement. Together, these data demonstrate that multipotent progenitors rather than lineage-specified NK progenitors are targets of V(D)J recombination and that NK cells bearing the relics of earlier V(D)J rearrangements have different developmental dynamics but robust biological capabilities in vivo.

Collaboration


Dive into the Lisa Borghesi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Yang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lela Kardava

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ying Ding

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ailing Liu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Brandt L. Esplin

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Paul W. Kincade

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge