Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Byrne is active.

Publication


Featured researches published by Lisa Byrne.


Clinical Infectious Diseases | 2015

Whole-Genome Sequencing for National Surveillance of Shiga Toxin–Producing Escherichia coli O157

Timothy J. Dallman; Lisa Byrne; Philip M. Ashton; Lauren A. Cowley; Neil T. Perry; G. K. Adak; Liljana Petrovska; Richard J. Ellis; Richard Elson; Anthony Underwood; Jonathan Green; William P. Hanage; Claire Jenkins; Kathie Grant; John Wain

BACKGROUND National surveillance of gastrointestinal pathogens, such as Shiga toxin-producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. METHODS We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. RESULTS Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. CONCLUSIONS WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations.


Applied and Environmental Microbiology | 2015

Public Health Investigation of Two Outbreaks of Shiga Toxin-Producing Escherichia coli O157 Associated with Consumption of Watercress

Claire Jenkins; Timothy J. Dallman; N. Launders; Caroline Willis; Lisa Byrne; Frieda Jorgensen; Mark Eppinger; G. K. Adak; Heather Aird; Nicola Elviss; Kathie Grant; Dilys Morgan; Jim McLauchlin

ABSTRACT An increase in the number of cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 2 (PT2) in England in September 2013 was epidemiologically linked to watercress consumption. Whole-genome sequencing (WGS) identified a phylogenetically related cluster of 22 cases (outbreak 1). The isolates comprising this cluster were not closely related to any other United Kingdom strain in the Public Health England WGS database, suggesting a possible imported source. A second outbreak of STEC O157 PT2 (outbreak 2) was identified epidemiologically following the detection of outbreak 1. Isolates associated with outbreak 2 were phylogenetically distinct from those in outbreak 1. Epidemiologically unrelated isolates on the same branch as the outbreak 2 cluster included those from human cases in England with domestically acquired infection and United Kingdom domestic cattle. Environmental sampling using PCR resulted in the isolation of STEC O157 PT2 from irrigation water at one implicated watercress farm, and WGS showed this isolate belonged to the same phylogenetic cluster as outbreak 2 isolates. Cattle were in close proximity to the watercress bed and were potentially the source of the second outbreak. Transfer of STEC from the field to the watercress bed may have occurred through wildlife entering the watercress farm or via runoff water. During this complex outbreak investigation, epidemiological studies, comprehensive testing of environmental samples, and the use of novel molecular methods proved invaluable in demonstrating that two simultaneous outbreaks of STEC O157 PT2 were both linked to the consumption of watercress but were associated with different sources of contamination.


Eurosurveillance | 2014

A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012

Lisa Byrne; I. Fisher; Tansy Peters; Alison E. Mather; Nicholas R. Thomson; Bettina Rosner; Helen Bernard; P. McKeown; Martin Cormican; J. Cowden; V. Aiyedun; C Lane

In November 2011, the presence of Salmonella Newport in a ready-to-eat watermelon slice was confirmed as part of a local food survey in England. In late December 2011, cases of S. Newport were reported in England, Wales, Northern Ireland, Scotland, Ireland and Germany. During the outbreak, 63 confirmed cases of S. Newport were reported across all six countries with isolates indistinguishable by pulsed-field gel electrophoresis from the watermelon isolate.A subset of outbreak isolates were whole-genome sequenced and were identical to, or one single nucleotide polymorphism different from the watermelon isolate.In total, 46 confirmed cases were interviewed of which 27 reported watermelon consumption. Further investigations confirmed the outbreak was linked to the consumption of watermelon imported from Brazil.Although numerous Salmonella outbreaks associated with melons have been reported in the United States and elsewhere, this is the first of its kind in Europe.Expansion of the melon import market from Brazil represents a potential threat for future outbreaks. Whole genome sequencing is rapidly becoming more accessible and can provide a compelling level of evidence of linkage between human cases and sources of infection,to support public health interventions in global food markets.


Epidemiology and Infection | 2015

The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009-2012.

Lisa Byrne; Claire Jenkins; N. Launders; Richard Elson; G. K. Adak

Between 1 January 2009 and 31 December 2012 in England, a total of 3717 cases were reported with evidence of Shiga toxin-producing E. coli (STEC) infection, and the crude incidence of STEC infection was 1·80/100 000 person-years. Incidence was highest in children aged 1-4 years (7·63/100 000 person-years). Females had a higher incidence of STEC than males [rate ratio (RR) 1·24, P < 0·001], and white ethnic groups had a higher incidence than non-white ethnic groups (RR 1·43, P < 0·001). Progression to haemolytic uraemic syndrome (HUS) was more frequent in females and children. Non-O157 STEC strains were associated with higher hospitalization and HUS rates than O157 STEC strains. In STEC O157 cases, phage type (PT) 21/28, predominantly indigenously acquired, was also associated with more severe disease than other PTs, as were strains encoding stx2 genes. Incidence of STEC was over four times higher in people residing in rural areas than urban areas (RR 4·39, P < 0·001). Exposure to livestock and/or their faeces was reported twice as often in cases living in rural areas than urban areas (P < 0·001). Environmental/animal contact remains an important risk factor for STEC transmission and is a significant driver in the burden of sporadic STEC infection. The most commonly detected STEC serogroup in England was O157. However, a bias in testing methods results in an unquantifiable under-ascertainment of non-O157 STEC infections. Implementation of PCR-based diagnostic methods designed to detect all STEC, to address this diagnostic deficit, is therefore important.


Journal of Medical Microbiology | 2014

Epidemiology and microbiology of Shiga toxin-producing Escherichia coli other than serogroup O157 in England, 2009-2013.

Lisa Byrne; Gemma L. Vanstone; Neil T. Perry; N. Launders; G. K. Adak; Gauri Godbole; Kathie Grant; Robin Smith; Claire Jenkins

The implementation of direct testing of clinical faecal specimens for gastrointestinal (GI) pathogens by PCR offers a sensitive and comprehensive approach for the detection of Shiga toxin-producing Escherichia coli (STEC). The introduction of a commercial PCR assay, known as GI PCR, for the detection of GI pathogens at three frontline hospital laboratories in England between December 2012 and December 2013 led to a significant increase in detection of STEC other than serogroup O157 (non-O157 STEC). In 2013, 47 isolates were detected in England, compared with 57 in the preceding 4 years (2009-2012). The most common non-O157 STEC serogroup detected was O26 (23.2 %). A total of 47 (47.5 %) STEC isolates had stx2 only, 28 (28.3 %) carried stx1 and stx2, and the remaining 24 (24.2 %) had stx1 only. Stx2a (64.0 %) was the most frequently detected Stx2 subtype. The eae (intimin) gene was detected in 52 (52.5 %) non-O157 STEC isolates. Six strains of STEC O104 had aggR, but this gene was not detected in any other STEC serogroups in this study. Haemolytic ureamic syndrome was significantly associated with STEC strains possessing eae [odds ratio (OR) 5.845, P = 0.0235] and/or stx2a (OR 9.56, P = 0.0034) subtypes. A matched case-control analysis indicated an association between non-O157 STEC cases and contact with farm animals. Widespread implementation of the PCR approach in England will determine the true incidence of non-O157 STEC infection, highlight the burden in terms of morbidity and mortality, and facilitate the examination of risk factors to indicate whether there are niche risk exposures for particular strains.


Microbial Genomics | 2015

Applying phylogenomics to understand the emergence of Shiga Toxin producing Escherichia coli O157:H7 strains causing severe human disease in the United Kingdom.

Timothy J. Dallman; Philip M. Ashton; Lisa Byrne; Neil T. Perry; Liljana Petrovska; Richard J. Ellis; Lesley Allison; Mary Hanson; Anne Holmes; George J. Gunn; Margo E. Chase-Topping; Mark E. J. Woolhouse; Kathie Grant; David L. Gally; John Wain; Claire Jenkins

Shiga-toxin-producing Escherichia coli (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the emergence of this serotype in the 1980s, research has focussed on unravelling the evolutionary events from the E. coli O55:H7 ancestor to the contemporaneous globally dispersed strains observed today. In this study, the genomes of over 1000 isolates from both human clinical cases and cattle, spanning the history of STEC O157:H7 in the UK, were sequenced. Phylogenetic analysis revealed the ancestry, key acquisition events and global context of the strains. Dated phylogenies estimated the time to evolution of the most recent common ancestor of the current circulating global clone to be 175 years ago. This event was followed by rapid diversification. We show the acquisition of specific virulence determinates has occurred relatively recently and coincides with its recent detection in the human population. We used clinical outcome data from 493 cases of STEC O157:H7 to assess the relative risk of severe disease including haemolytic uraemic syndrome from each of the defined clades in the population and show the dramatic effect Shiga toxin repertoire has on virulence. We describe two strain replacement events that have occurred in the cattle population in the UK over the last 30 years, one resulting in a highly virulent strain that has accounted for the majority of clinical cases in the UK over the last decade. There is a need to understand the selection pressures maintaining Shiga-toxin-encoding bacteriophages in the ruminant reservoir and the study affirms the requirement for close surveillance of this pathogen in both ruminant and human populations.


Epidemiology and Infection | 2015

The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11

Timothy J. Dallman; Lisa Byrne; N. Launders; K. Glen; Kathie Grant; Claire Jenkins

Many serogroups of Shiga toxin-producing Escherichia coli (STEC) other than serogroup O157 (non-O157 STEC), for example STEC O26:H11, are highly pathogenic and capable of causing haemolytic uraemic syndrome. A recent increase in non-O157 STEC cases identified in England, resulting from a change in the testing paradigm, prompted a review of the current methods available for detection and typing of non-O157 STEC for surveillance and outbreak investigations. Nineteen STEC O26:H11 strains, including four from a nursery outbreak were selected to assess typing methods. Serotyping and multilocus sequence typing were not able to discriminate between the stx-producing strains in the dataset. However, genome sequencing provided rapid and robust confirmation that isolates of STEC O26:H11 associated with a nursery outbreak were linked at the molecular level, had a common source and were distinct from the other strains analysed. Virulence gene profiling of DNA extracted from a polymerase chain reaction (PCR)-positive/culture-negative faecal specimen from a case that was epidemiologically linked to the STEC O26:H11 nursery outbreak, provided evidence at the molecular level to support that link. During this study, we describe the utility of PCR and the genome sequencing approach in facilitating surveillance and enhancing the response to outbreaks of non-O157 STEC.


Emerging Infectious Diseases | 2016

Shiga Toxin–Producing Escherichia coli O157, England and Wales, 1983–2012

Natalie L. Adams; Lisa Byrne; Geraldine Smith; Richard Elson; John Harris; R. L. Salmon; Robert Smith; Sarah J. O’Brien; G. K. Adak; Claire Jenkins

Although incidence remained constant, outbreaks from contaminated meat and milk declined and those from petting farms and schools and nurseries increased.


PLOS ONE | 2014

Evaluating the use of multilocus variable number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 as a routine public health tool in England

Lisa Byrne; Richard Elson; Timothy J. Dallman; Neil T. Perry; Philip M. Ashton; John Wain; G. K. Adak; Kathie Grant; Claire Jenkins

Multilocus variable number tandem repeat analysis (MLVA) provides microbiological support for investigations of clusters of cases of infection with Shiga toxin-producing E. coli (STEC) O157. All confirmed STEC O157 isolated in England and submitted to the Gastrointestinal Bacteria Reference Unit (GBRU) during a six month period were typed using MLVA, with the aim of assessing the impact of this approach on epidemiological investigations. Of 539 cases investigated, 341 (76%) had unique (>2 single locus variants) MLVA profiles, 12% of profiles occurred more than once due to known household transmission and 12% of profiles occurred as part of 41 clusters, 21 of which were previously identified through routine public health investigation of cases. The remaining 20 clusters were not previously detected and STEC enhanced surveillance data for associated cases were retrospectively reviewed for epidemiological links including shared exposures, geography and/or time. Additional evidence of a link between cases was found in twelve clusters. Compared to phage typing, the number of sporadic cases was reduced from 69% to 41% and the diversity index for MLVA was 0.996 versus 0.782 for phage typing. Using MLVA generates more data on the spatial and temporal dispersion of cases, better defining the epidemiology of STEC infection than phage typing. The increased detection of clusters through MLVA typing highlights the challenges to health protection practices, providing a forerunner to the advent of whole genome sequencing as a diagnostic tool.


Eurosurveillance | 2013

Outbreak of Shiga toxin-producing E. coli O157 associated with consumption of watercress, United Kingdom, August to September 2013.

N Launders; Lisa Byrne; N Adams; K. Glen; Claire Jenkins; D Tubin-Delic; Mary E. Locking; Christopher Williams; Dilys Morgan

An increase in the number of cases of Shiga toxin-producing Escherichia coli O157 PT 2 stx2 infection was reported in the United Kingdom on 9 September 2013. Of the 19 cases, 13 were interviewed, of which 10 reported consuming watercress purchased from one retailer. The retailer recalled pre-packed bagged salads containing watercress on 12 September. The descriptive epidemiology was supported by a case–case study performed after control measures were implemented.

Collaboration


Dive into the Lisa Byrne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wain

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge