Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Cardamone is active.

Publication


Featured researches published by Lisa Cardamone.


Journal of Neurotrauma | 2008

Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats

Nigel C. Jones; Lisa Cardamone; John P. Williams; Michael R. Salzberg; Damian E. Myers; Terence J. O'Brien

Mood disturbances, including depression and anxiety disorders, are common and disabling long-term sequelae of traumatic brain injury (TBI). These psychiatric conditions have generally been considered psychosocial consequences of the trauma, but neurobiological alterations and causes have also been implicated. Using a rat model of TBI (lateral fluid-percussion injury), this longitudinal study seeks to assess anxiety and depression-like behaviors following experimental TBI. Male Wistar rats (n = 20) received a severe (approximately 3.5 atmosphere) pressure pulse directed to the right sensorimotor cortex, or sham surgery (n = 15). At 1, 3, and 6 months following injury, all rats underwent four assessments of anxiety and depression-like behaviors: exposure to an open field, elevated plus maze test, the forced swim test, and the sucrose preference test. Injured animals displayed increased anxiety-like behaviors throughout the study, as evidenced by reduced time spent (p = 0.014) and reduced entries (p < 0.001) into the center area of the open field, and reduced proportion of time in the open arms of the plus maze (p = 0.015), compared to sham-injured controls. These striking changes were particularly evident 1 and 3 months after injury. No differences were observed in depression-like behaviors in the forced swim test (a measure of behavioral despair) and the sucrose preference test (a measure of anhedonia). This report provides the first evidence of persistent anxiety-like disturbances in an experimental model of TBI. This finding indicates that the common occurrence of these symptoms in human sufferers is likely to have, at least in part, a neurobiological basis. Studies in this model could provide insight into the mechanisms underlying affective disturbance in brain-injured patients.


Epilepsia | 2013

Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome

Sandy R. Shultz; Lisa Cardamone; Ying R. Liu; R. Edward Hogan; Luigi Maccotta; David K. Wright; Ping Zheng; Amelia Koe; Marie Claude Gregoire; John P. Williams; Rodney J. Hicks; Nigel C. Jones; Damian E. Myers; Terence J. O'Brien; Viviane Bouilleret

Posttraumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, and risk of injury and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post‐TBI relate to the later development of PTE.


The Journal of Nuclear Medicine | 2010

Progressive Metabolic and Structural Cerebral Perturbations After Traumatic Brain Injury: An In Vivo Imaging Study in the Rat

Ying R. Liu; Lisa Cardamone; R. Edward Hogan; Marie Claude Gregoire; John P. Williams; R. Hicks; David Binns; Amelia Koe; Nigel C. Jones; Damian E. Myers; Terence J. O'Brien; Viviane Bouilleret

Traumatic brain injury (TBI) has a high incidence of long-term neurologic and neuropsychiatric morbidity. Metabolic and structural changes in rat brains were assessed after TBI using serial 18F-FDG PET and 3-dimensional MRI in vivo. Methods: Rats underwent lateral fluid percussion injury (FPI; n = 16) or a sham procedure (n = 11). PET and MR images were acquired at 1 wk and at 1, 3, and 6 mo after injury. Morphologic changes were assessed using MRI-based regions of interest, and hippocampal shape changes were assessed with large-deformation high-dimensional mapping. Metabolic changes were assessed using region-of-interest analysis and statistical parametric mapping with the flexible factorial analysis. Anxiety-like behavior and learning were assessed at 1, 3, and 6 mo after injury. Results: PET analyses showed widespread hypometabolism in injured rats, in particular involving the ipsilateral cortex, hippocampus, and amygdalae, present at 1 wk after FPI, most prominent at 1 mo, and then decreasing. Compared with the sham group, rats in the FPI group had decreased structural volume which progressively increased over 3–6 mo, occurring in the ipsilateral cortex, hippocampus, and ventricles after FPI (P < 0.05). Large-deformation high-dimensional mapping showed evolving hippocampal shape changes across the 6 mo after FPI. Injured rats displayed increased anxiety-like behavior (P < 0.05), but there were no direct correlations between the severity of the behavior abnormalities and functional or structural imaging changes. Conclusion: In selected brain structures, FPI induces early hypometabolism and delayed progressive atrophic changes that are dynamic and continue to evolve for months. These findings have implications for the understanding of the pathophysiology and evolution of long-term neurologic morbidity following TBI, and indicate an extended window for targeted neuroprotective interventions.


Journal of Neuropathology and Experimental Neurology | 2010

Erythropoietin Is Neuroprotective in a Preterm Ovine Model of Endotoxin-Induced Brain Injury

Sandra Rees; Nadia Hale; Robert De Matteo; Lisa Cardamone; Mary Tolcos; Michelle Loeliger; Anna Mackintosh; Amy Shields; Megan E. Probyn; Deanne L.V. Greenwood; Richard Harding

Intrauterine infection and inflammation have been linked to preterm birth and brain damage. We hypothesized that recombinant human erythropoietin (rhEPO) would ameliorate brain damage in anovine model of fetal inflammation. At 107 ± 1 day of gestational age (DGA), chronically catheterized fetal sheep received on 3 consecutive days 1) an intravenous bolus dose of lipopolysaccharide ([LPS] ∼0.9 &mgr;g/kg; n = 8); 2) an intravenous bolus dose of LPS, followed at 1 hour by 5,000 IU/kg of rhEPO (LPS + rhEPO, n = 8); or 3) rhEPO (n = 5). Untreated fetuses (n = 8) served as controls. Fetal physiological parameters were monitored, and fetal brains and optic nerves were histologically examined at 116 ± 1 DGA. Exposure to LPS, but not to rhEPO alone or saline, resulted in fetal hypoxemia, hypotension (p < 0.05), brain damage, including white matter injury, and reductions in numbers of myelinating oligodendrocytes in the corticospinal tract and myelinated axons in the optic nerve (p < 0.05 for both). Treatment of LPS-exposed fetuses with rhEPO did not alter the physiological effects of LPS but reduced brain injury and was beneficial to myelination in the corticospinal tract and the optic nerve. This is the first study in a long-gestation species to demonstrate the neuroprotective potential of rhEPO in reducing fetal brain and optic nerve injury after LPS exposure.


British Journal of Pharmacology | 2013

Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder?

Lisa Cardamone; Terence J. O'Brien; Nigel C. Jones

There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer (‘second generation’) antidepressants, such as selective serotonin reuptake inhibitors or serotonin‐noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term ‘epileptogenesis’: the progressive neurobiological processes by which the non‐epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.


Epilepsia | 2012

Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE

Bianca Jupp; John P. Williams; David Binns; Rodney J. Hicks; Lisa Cardamone; Nigel C. Jones; Sandra Rees; Terence J. O’Brien

Purpose:  Temporal hypometabolism on fluorodeoxyglucose positron emission tomography (FDG‐PET) is a common finding in patients with drug‐resistant temporal lobe epilepsy (TLE). The pathophysiology underlying the hypometabolism, including whether it reflects a primary epileptogenic process, or whether it occurs later as result of limbic atrophy or as a result of chronic seizures, remains unknown. This study aimed to investigate the ontologic relationship among limbic atrophy, histological changes, and hypometabolism in rats.


Epilepsy Research | 2013

Axon initial segment structural plasticity in animal models of genetic and acquired epilepsy

Rosemary C. Harty; Tae Hwan Kim; Evan A. Thomas; Lisa Cardamone; Nigel C. Jones; Steven Petrou; Verena C. Wimmer

A novel form of neuronal plasticity, occurring at the axon initial segment (AIS), has recently been described. Lengthening of the AIS and movement away from the soma are consequences of changes in neuronal input and result in alterations in neuronal excitability. We hypothesised that AIS plasticity may play a role in epilepsy, due to chronic changes in neuronal activity. Immunohistochemistry and confocal microscopy were used to analyse AIS length and position in pyramidal neurons in deep layer 5 of the somatosensory cortex from 5 mice with genetic epilepsy and 4 controls, and from 3 rats subjected to amygdala kindling and 3 controls. The effect of a subtle alteration of AIS position was modelled computationally. We identified a difference in the position of the AIS in animals with seizures: in mice the AIS was positioned 0.2 μm further away from the soma, and in rats the AIS was positioned 0.6 μm closer to the soma compared with controls. Computational modelling indicated that a subtle alteration in AIS position could result in a change in action potential firing threshold. The identification of AIS plasticity in animal models of epilepsy is significant in furthering our understanding of the pathophysiological mechanisms involved in this disorder.


Journal of Neurotrauma | 2009

Progressive Brain Changes on Serial Manganese-Enhanced MRI following Traumatic Brain Injury in the Rat

Viviane Bouilleret; Lisa Cardamone; Y.R. Liu; Ke Fang; Damian E. Myers; Terence J. O'Brien

Traumatic brain injury (TBI) has a high incidence of long-term morbidity. Manganese-enhanced MRI (MEMRI) provides high contrast structural and functional detail of the brain in-vivo. The study utilized serial MEMRI scanning in the fluid percussion injury (FPI) rats model to assess long-term changes in the brain following TBI. Rats underwent a left-sided craniotomy and a 3.5 atmosphere FPI pulse (n = 23) or sham procedure (n = 22). MEMRI acquisition was performed at baseline, 1 day, 1 month, and 6 months after FPI. Volume changes and MnCl(2) enhancement were measured blindly using region-of-interest analysis and the results analyzed with repeated measures MANOVA. Compared to the shams, FPI animals showed a progressive decrease in brain volume from 1 (right, p = 0.02; left, p = 0.008) to 6 months (right, p = 0.04; left, p = 0.006), with progression over time (F = 7.16, p = 0.00018). Similar changes were found in the cortex and the hippocampus. Conversely, the ventricular volume was increased at 1 (p = 0.02) and 6 months (p = 0.003), with progression over time (F = 7.27, p = 0.0001). There were no differences in thalamic or amygdalae volumes. The severity of the early neuromotor deficits and the T2 signal intensity of the subacute focal lesion were highly predictive of the severity of the long-term hippocampal decrease, and the former was also associated with the degree of neuronal sprouting. Differential MnCl(2) enhancement occurred only in the dentate gyrus at 1 month on the side of trauma (p = 0.04). Progressive functional and structural changes occur in specific brain regions post-FPI. The severity of the neuromotor deficit and focal signal changes on MRI subacutely post-injury are predictive of severity of these long-term neurodegenerative changes.


Journal of Magnetic Resonance Imaging | 2011

Confounding neurodegenerative effects of manganese for in vivo MR imaging in rat models of brain insults

Viviane Bouilleret; Lisa Cardamone; Cyril Liu; Amelia S. Koe; Ke Fang; John P. Williams; Damian E. Myers; Terence J. O'Brien; Nigel C. Jones

To examine the long‐term consequences of manganese exposure due to the use of manganese‐enhanced magnetic resonance imaging (MEMRI) in a model of closed head injury, the fluid‐percussion injury (FPI) model.


Neurobiology of Disease | 2014

Chronic antidepressant treatment accelerates kindling epileptogenesis in rats

Lisa Cardamone; Michael R. Salzberg; Amelia S. Koe; Ezgi Ozturk; Terence J. O'Brien; Nigel C. Jones

OBJECTIVES Due to the high comorbidity of epilepsy and depression, antidepressant treatment is commonly indicated for patients with epilepsy. Studies in humans and animal models suggest that selective serotonin reuptake inhibitors (SSRIs) may reduce seizure frequency and severity, and these drugs are generally considered safe for use in epilepsy. No studies have investigated the effects of SSRIs on epileptogenesis, the neurobiological process underlying the development of the epileptic state. METHODS The effect of continuous infusion of the SSRI, fluoxetine (10mg/kg/day sc), versus vehicle control on amygdala kindling was examined in adult male Wistar rats. Seizure threshold and kindling rates were compared between SSRI-treated rats and controls. The study was then repeated examining the effect of a different SSRI, citalopram (10mg/kg/day sc), versus vehicle control. Hippocampal mRNA expression of the serotonin transporter (SERT) and the 5-HT1A receptor was examined in the brains of the rats post-mortem. RESULTS Treatment with either fluoxetine or citalopram significantly accelerated kindling epileptogenesis, as evidenced by fewer stimulations to reach Class V seizures compared to their respective vehicle-treated group (p<0.01 for both drugs). Seizure duration was also increased in fluoxetine-treated rats. No differences in seizure threshold were observed between treatments (p>0.05). mRNA analysis did not reveal any molecular changes which were common to both treatments. CONCLUSIONS The rate of epileptogenesis in rats is enhanced by chronic treatment with SSRIs. This could potentially have implications regarding the effect of SSRIs on the development or progression of human epilepsy.

Collaboration


Dive into the Lisa Cardamone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y.R. Liu

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

David Binns

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge