Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa E.S. Crose is active.

Publication


Featured researches published by Lisa E.S. Crose.


Journal of Clinical Investigation | 2014

Alveolar rhabdomyosarcoma–associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression

Lisa E.S. Crose; Kathleen A. Galindo; Julie Kephart; Candy Chen; Julien Fitamant; Nabeel Bardeesy; Rex C. Bentley; Rene L. Galindo; Jen Tsan Ashley Chi; Corinne M. Linardic

Alveolar rhabdomyosarcoma (aRMS) is an aggressive sarcoma of skeletal muscle characterized by expression of the paired box 3-forkhead box protein O1 (PAX3-FOXO1) fusion oncogene. Despite its discovery nearly two decades ago, the mechanisms by which PAX3-FOXO1 drives tumor development are not well characterized. Previously, we reported that PAX3-FOXO1 supports aRMS initiation by enabling bypass of cellular senescence checkpoints. We have now found that this bypass occurs in part through PAX3-FOXO1-mediated upregulation of RASSF4, a Ras-association domain family (RASSF) member. RASSF4 expression was upregulated in PAX3-FOXO1-positive aRMS cell lines and tumors. Enhanced RASSF4 expression promoted cell cycle progression, senescence evasion, and tumorigenesis through inhibition of the Hippo pathway tumor suppressor MST1. We also found that the downstream Hippo pathway target Yes-associated protein 1 (YAP), which is ordinarily restrained by Hippo signaling, was upregulated in RMS tumors. These data suggest that Hippo pathway dysfunction promotes RMS. This work provides evidence for Hippo pathway suppression in aRMS and demonstrates a progrowth role for RASSF4. Additionally, we identify a mechanism used by PAX3-FOXO1 to inhibit MST1 signaling and promote tumorigenesis in aRMS.


Frontiers in Oncology | 2013

Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

Ashley Hinson; Rosanne Jones; Lisa E.S. Crose; Brian C. Belyea; Frederic G. Barr; Corinne M. Linardic

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.


Clinical Cancer Research | 2012

FGFR4 Blockade Exerts Distinct Antitumorigenic Effects in Human Embryonal versus Alveolar Rhabdomyosarcoma

Lisa E.S. Crose; Katherine T. Etheridge; Candy Chen; Brian C. Belyea; Lindsay J. Talbot; Rex C. Bentley; Corinne M. Linardic

Purpose: Rhabdomyosarcoma (RMS) is a malignancy with features of skeletal muscle, and the most common soft tissue sarcoma of childhood. Survival for high-risk groups is approximately 30% at 5 years and there are no durable therapies tailored to its genetic aberrations. During genetic modeling of the common RMS variants, embryonal RMS (eRMS) and alveolar RMS (aRMS), we noted that the receptor tyrosine kinase (RTK) fibroblast growth factor receptor 4 (FGFR4) was upregulated as an early event in aRMS. Herein, we evaluated the expression of FGFR4 in eRMS compared with aRMS, and whether FGFR4 had similar or distinct roles in their tumorigenesis. Experimental Design: Human RMS cell lines and tumor tissue were analyzed for FGFR4 expression by immunoblot and immunohistochemistry. Genetic and pharmacologic loss-of-function of FGFR4 using virally transduced short hairpin RNA (shRNA) and the FGFR small-molecule inhibitor PD173074, respectively, were used to study the role of FGFR4 in RMS cell lines in vitro and xenografts in vivo. Expression of the antiapoptotic protein BCL2L1 was also examined. Results: FGFR4 is expressed in both RMS subtypes, but protein expression is higher in aRMS. The signature aRMS gene fusion product, PAX3-FOXO1, induced FGFR4 expression in primary human myoblasts. In eRMS, FGFR4 loss-of-function reduced cell proliferation in vitro and xenograft formation in vivo. In aRMS, it diminished cell survival in vitro. In myoblasts and aRMS, FGFR4 was necessary and sufficient for expression of BCL2L1 whereas in eRMS, this induction was not observed, suggesting differential FGFR4 signaling. Conclusion: These studies define dichotomous roles for FGFR4 in RMS subtypes, and support further study of FGFR4 as a therapeutic target. Clin Cancer Res; 18(14); 3780–90. ©2012 AACR.


Molecular Cancer Therapeutics | 2015

Histone Deacetylase Inhibitors Inhibit Rhabdomyosarcoma by Reactive Oxygen Species–Dependent Targeting of Specificity Protein Transcription Factors

Erik Hedrick; Lisa E.S. Crose; Corinne M. Linardic; Stephen Safe

The two major types of rhabdomyosarcoma (RMS) are predominantly diagnosed in children, namely embryonal (ERMS) and alveolar (ARMS) RMS, and patients are treated with cytotoxic drugs, which results in multiple toxic side effects later in life. Therefore, development of innovative chemotherapeutic strategies is imperative, and a recent genomic analysis suggested the potential efficacy of reactive oxygen species (ROS)–inducing agents. Here, we demonstrate the efficacy of the potent histone deacetylase (HDAC) inhibitors, panobinostat and vorinostat, as agents that inhibit RMS tumor growth in vivo, induce apoptosis, and inhibit invasion of RD and Rh30 RMS cell lines. These effects are due to epigenetic repression of cMyc, which leads to decreased expression of cMyc-regulated miRs-17, -20a, and -27a; upregulation of ZBTB4, ZBTB10, and ZBTB34; and subsequent downregulation of Sp transcription factors. We also show that inhibition of RMS cell growth, survival and invasion, and repression of Sp transcription factors by the HDAC inhibitors are independent of histone acetylation but reversible after cotreatment with the antioxidant glutathione. These results show a novel ROS-dependent mechanism of antineoplastic activity for panobinostat and vorinostat that lies outside of their canonical HDAC-inhibitory activity and demonstrates the potential clinical utility for treating RMS patients with ROS-inducing agents. Mol Cancer Ther; 14(9); 2143–53. ©2015 AACR.


Sarcoma | 2011

Receptor Tyrosine Kinases as Therapeutic Targets in Rhabdomyosarcoma

Lisa E.S. Crose; Corinne M. Linardic

Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas of childhood and adolescence. To date, there are no effective treatments that target the genetic abnormalities in RMS, and current treatment options for high-risk groups are not adequate. Over the past two decades, research into the molecular mechanisms of RMS has identified key genes and signaling pathways involved in disease pathogenesis. In these studies, members of the receptor tyrosine kinase (RTK) family of cell surface receptors have been characterized as druggable targets for RMS. Through small molecule inhibitors, ligand-neutralizing agents, and monoclonal receptor-blocking antibodies, RTK activity can be manipulated to block oncogenic properties associated with RMS. Herein, we review the members of the RTK family that are implicated in RMS tumorigenesis and discuss both the problems and promise of targeting RTKs in RMS.


International Journal of Cancer | 2013

Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors

Gayathri Chadalapaka; Indira Jutooru; Sandeep Sreevalsan; Satya S. Pathi; Kyounghyun Kim; Candy Chen; Lisa E.S. Crose; Corinne M. Linardic; Stephen Safe

Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non‐steroidal anti‐inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp‐regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c‐MET, insulin‐like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp‐regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients.


Frontiers in Oncology | 2015

A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas.

Michael D. Deel; Jenny J. Li; Lisa E.S. Crose; Corinne M. Linardic

The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.


PLOS ONE | 2015

Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma

Katherine K. Slemmons; Lisa E.S. Crose; Erin Rudzinski; Rex C. Bentley; Corinne M. Linardic

Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle histogenesis, is the most common soft tissue sarcoma of childhood and adolescence. Survival for high-risk groups is less than 30% at 5 years. RMS also occurs during adulthood, with a lower incidence but higher mortality. Recently, mutational profiling has revealed a correlation between activating Ras mutations in the embryonal (eRMS) and pleomorphic (pRMS) histologic variants of RMS, and a poorer outcome for those patients. Independently, the YAP transcriptional coactivator, an oncoprotein kept in check by the Hippo tumor suppressor pathway, is upregulated in eRMS. Here we show that YAP promotes cell proliferation and antagonizes apoptosis and myogenic differentiation of human RMS cells bearing oncogenic Ras mutations in cell culture studies in vitro and in murine xenografts in vivo. Pharmacologic inhibition of YAP by the benzoporphyrin derivative verteporfin decreased cell proliferation and tumor growth in vivo. To interrogate the temporal contribution of YAP in eRMS tumorigenesis, we used a primary human cell-based genetic model of Ras-driven RMS. Constitutively active YAP functioned as an early genetic lesion, permitting bypass of senescence and priming myoblasts to tolerate subsequent expression of hTERT and oncogenic Ras, which were necessary and sufficient to generate murine xenograft tumors mimicking RMS in vivo. This work provides evidence for cooperation between YAP and oncogenic Ras in RMS tumorigenesis, laying the foundation for preclinical co-targeting of these pathways.


Clinical Cancer Research | 2015

Secreted frizzled related protein 3 (SFRP3) is required for tumorigenesis of PAX3-FOXO1-positive alveolar rhabdomyosarcoma

Julie Kephart; Rosanne G.J. Tiller; Lisa E.S. Crose; Katherine K. Slemmons; Po-Han Chen; Ashley Hinson; Rex C. Bentley; Jen-Tsan Ashley Chi; Corinne M. Linardic

Purpose: Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3–FOXO1. As PAX3–FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3–FOXO1 to support tumorigenesis. Experimental Design: Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3–FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. Results: In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. Conclusions: SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. Clin Cancer Res; 21(21); 4868–80. ©2015 AACR.


Molecular Cancer Research | 2017

A Novel Notch–YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma

Katherine K. Slemmons; Lisa E.S. Crose; Stefan Riedel; Manuela Sushnitha; Brian C. Belyea; Corinne M. Linardic

Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of <30%, a statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ. This bidirectional circuit boosts expression of key stem cell genes, including SOX2, which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression. Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777–91. ©2017 AACR.

Collaboration


Dive into the Lisa E.S. Crose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge