Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa G. Gregory is active.

Publication


Featured researches published by Lisa G. Gregory.


Trends in Immunology | 2011

Orchestrating house dust mite-associated allergy in the lung

Lisa G. Gregory

House dust mites (HDM; Dermatophagoides sp.) are one of the commonest aeroallergens worldwide and up to 85% of asthmatics are typically HDM allergic. Allergenicity is associated both with the mites themselves and with ligands derived from mite-associated bacterial and fungal products. Murine models of allergic airways disease for asthma research have recently switched from the use of surrogate allergen ovalbumin together with adjuvant to use of the HDM extract. This has accelerated understanding of how adaptive and innate immunity generate downstream pathology. We review the myriad ways in which HDM allergic responses are orchestrated. Understanding the molecular pathways that elicit HDM-associated pathology is likely to reveal novel targets for therapeutic intervention.


Thorax | 2013

IL-25 drives remodelling in allergic airways disease induced by house dust mite

Lisa G. Gregory; Carla P. Jones; Simone A. Walker; Devika Sawant; Kate Gowers; Gaynor A. Campbell; Andrew N. J. McKenzie

Background Overexpression of the transforming growth factor β family signalling molecule smad2 in the airway epithelium provokes enhanced allergen-induced airway remodelling in mice, concomitant with elevated levels of interleukin (IL)-25. Objective We investigated whether IL-25 plays an active role in driving this airway remodelling. Methods Anti-IL-25 antibody was given to mice exposed to either inhaled house dust mite (HDM) alone, or in conjunction with an adenoviral smad2 vector which promotes an enhanced remodelling phenotype. Results Blocking IL-25 in allergen-exposed mice resulted in a moderate reduction in pulmonary eosinophilia and levels of T helper type 2 associated cytokines, IL-5 and IL-13. In addition, IL-25 neutralisation abrogated peribronchial collagen deposition, airway smooth muscle hyperplasia and airway hyperreactivity in control mice exposed to HDM and smad2-overexpressing mice. IL-25 was shown to act directly on human fibroblasts to induce collagen secretion. Recruitment of endothelial progenitor cells to the lung and subsequent neovascularisation was also IL-25 dependent, demonstrating a direct role for IL-25 during angiogenesis in vivo. Moreover, the secretion of innate epithelial derived cytokines IL-33 and thymic stromal lymphopoietin (TSLP) was completely ablated. Conclusions In addition to modulating acute inflammation, we now demonstrate a role for IL-25 in orchestrating airway remodelling. IL-25 also drives IL-33 and TSLP production in the lung. These data delineate a wider role for IL-25 in mediating structural changes to the lung following allergen exposure and implicate IL-25 as a novel therapeutic target for the treatment of airway remodelling in asthma.


The Journal of Allergy and Clinical Immunology | 2014

Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations.

Robert J. Snelgrove; Lisa G. Gregory; Teresa Peiró; Samia Akthar; Gaynor A. Campbell; Simone A. Walker

Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease.


The Journal of Allergy and Clinical Immunology | 2012

Activin A and TGF-β promote TH9 cell-mediated pulmonary allergic pathology

Carla P. Jones; Lisa G. Gregory; Benjamin Causton; Gaynor A. Campbell

BACKGROUND IL-9-secreting (T(H)9) T cells are thought to represent a distinct T-cell subset. However, evidence for their functionality in disease is uncertain. OBJECTIVE To define a functional phenotype for T(H)9-driven pathology in vivo. METHODS We used fluorescence-activated cell sorting to identify circulating T(H)9 cells in atopic and nonatopic subjects. In mice we utilized a model of allergic airways disease induced by house dust mite to determine T(H)9 cell function in vivo and the role of activin A in T(H)9 generation. RESULTS Allergic patients have elevated T(H)9 cell numbers in comparison to nonatopic donors, which correlates with elevated IgE levels. In a murine model, allergen challenge with house dust mite leads to rapid T(H)9 differentiation and proliferation, with much faster kinetics than for T(H)2 cell differentiation, resulting in the specific recruitment and activation of mast cells. The TGF-β superfamily member activin A replicates the function of TGF-β1 in driving the in vitro generation of T(H)9 cells. Importantly, the in vivo inhibition of T(H)9 differentiation induced by allergen was achieved only when activin A and TGF-β were blocked in conjunction but not alone, resulting in reduced airway hyperreactivity and collagen deposition. Conversely, adoptive transfer of T(H)9 cells results in enhanced pathology. CONCLUSION Our data identify a distinct functional role for T(H)9 cells and outline a novel pathway for their generation in vitro and in vivo. Functionally, T(H)9 cells promote allergic responses resulting in enhanced pathology mediated by the specific recruitment and activation of mast cells in the lungs.


American Journal of Respiratory and Critical Care Medicine | 2010

Overexpression of Smad2 Drives House Dust Mite–mediated Airway Remodeling and Airway Hyperresponsiveness via Activin and IL-25

Lisa G. Gregory; Sara A. Mathie; Simone A. Walker; Sophie Pegorier; Carla P. Jones

RATIONALE Airway hyperreactivity and remodeling are characteristic features of asthma. Interactions between the airway epithelium and environmental allergens are believed to be important in driving development of pathology, particularly because altered epithelial gene expression is common in individuals with asthma. OBJECTIVES To investigate the interactions between a modified airway epithelium and a common aeroallergen in vivo. METHODS We used an adenoviral vector to generate mice overexpressing the transforming growth factor-beta signaling molecule, Smad2, in the airway epithelium and exposed them to house dust mite (HDM) extract intranasally. MEASUREMENTS AND MAIN RESULTS Smad2 overexpression resulted in enhanced airway hyperreactivity after allergen challenge concomitant with changes in airway remodeling. Subepithelial collagen deposition was increased and smooth muscle hyperplasia was evident resulting in thickening of the airway smooth muscle layer. However, there was no increase in airway inflammation in mice given the Smad2 vector compared with the control vector. Enhanced airway hyperreactivity and remodeling did not correlate with elevated levels of Th2 cytokines, such as IL-13 or IL-4. However, mice overexpressing Smad2 in the airway epithelium showed significantly enhanced levels of IL-25 and activin A after HDM exposure. Blocking activin A with a neutralizing antibody prevented the increase in lung IL-25 and inhibited subsequent collagen deposition and also the enhanced airway hyperreactivity observed in the Smad2 overexpressing HDM-exposed mice. CONCLUSIONS Epithelial overexpression of Smad2 can specifically alter airway hyperreactivity and remodeling in response to an aeroallergen. Moreover, we have identified novel roles for IL-25 and activin A in driving airway hyperreactivity and remodeling.


American Journal of Respiratory Cell and Molecular Biology | 2009

Pathophysiological Features of Asthma Develop in Parallel in House Dust Mite–Exposed Neonatal Mice

Sejal Saglani; Sara A. Mathie; Lisa G. Gregory; Matthew J. Bell; Andrew Bush

Asthma frequently commences in early life during airway and immune development and exposure to new environmental challenges. Endobronchial biopsies from children with asthma are abnormal, and lung function is maximally reduced by 6 years of age. As longitudinal biopsy studies are unethical in children, the relationship between development of pathology and reduced lung function is unknown. We aimed to establish a novel neonatal mouse model of allergic airways disease to investigate the developmental sequence of the pathophysiologic features of asthma. Neonatal Balb/c mice were challenged three times weekly from Day 3 of life using intranasal house dust mite (HDM) or saline for up to 12 weeks. Weekly assessments of airway inflammation and remodeling were made. Airway hyperresponsiveness (AHR) to methacholine was assessed from Week 2 onward. Total and eosinophilic inflammation was significantly increased in the lungs of HDM-exposed neonates from Week 2 onwards, and a peak was seen at 3 weeks. Goblet cells and peribronchiolar reticulin deposition were significantly increased in HDM-exposed neonates from Week 3, and peribronchiolar collagen was significantly greater from Week 4. HDM-exposed neonates had increased AHR from Week 2 onward. Although inflammation and AHR had subsided after 4 weeks without allergen challenge, the increased reticulin and collagen deposition persisted in HDM-exposed mice. Neonatal mice exposed to intranasal HDM developed eosinophilic inflammation, airway remodeling, and AHR as reported in pediatric asthma. Importantly, all abnormalities developed in parallel, not sequentially, between 2 and 3 weeks of age.


Thorax | 2015

Pulmonary macrophages: key players in the innate defence of the airways

Adam J. Byrne; Sara A. Mathie; Lisa G. Gregory

Macrophages are the most numerous immune-cells present in the lung environment under homoeostatic conditions and are ideally positioned to dictate the innate defence of the airways. Pulmonary macrophage populations are heterogeneous and demonstrate remarkable plasticity, owing to variations in origin, tissue residency and environmental influences. Lung macrophage diversity facilitates considerable specialisation, aids efficient responses to environmental signals and allows rapid alterations in phenotype and physiology in response to a plethora of cytokines and microbial signals. This review describes pulmonary macrophage origins, phenotypes, roles in diseases of the airways and implications for the treatment of respiratory disease.


Molecular Therapy | 2003

Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo

Lisa G. Gregory; Richard P. Harbottle; L Lawrence; Hj Knapton; M Themis; Charles Coutelle

Gene transfer to the trachea and airways by adenoviral vectors is limited by the basolateral localization of viral receptors, resulting in relatively low levels of transduction. Modification of paracellular permeability by sodium caprate, which opens tight junctions, enhances gene transfer from the apical side of cultured human airway epithelial cells. Based on this observation we investigated whether Na-caprate could also increase gene transfer when applied to the luminal surface of the airway epithelia in vivo and compared these results with EGTA, which has previously been shown to enhance adenovirus transduction. Transgene expression in the trachea and upper airways was increased 25-fold by a 10-min pretreatment with 50 mM Na-caprate, corresponding to a 3-fold improvement over EGTA. In the more peripheral airways EGTA had no effect, whereas expression of beta-gal was increased 3-fold by Na-caprate. When the adenovirus was complexed with DEAE dextran, transduction of the airway epithelia after Na-caprate pretreatment was increased 45-fold over virus alone. In conclusion, Na-caprate facilitates gene transfer to airway epithelia, particularly when adenovirus is complexed with DEAE dextran, and may in future be used in a clinical setting to enhance the efficiency of vectors for gene therapy of cystic fibrosis via airway delivery.


Journal of Gene Medicine | 2006

Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo

Laurence Vaysse; Lisa G. Gregory; Richard P. Harbottle; Eric Perouzel; Oleg Tolmachov; Charles Coutelle

To develop more efficient non‐viral vectors, we have previously described a novel approach to attach a nuclear localisation signal (NLS) to plasmid DNA, by generating a fusion protein between the tetracycline repressor protein TetR and an SV40 NLS peptide (TetR‐NLS). The high affinity of TetR for the DNA sequence tetO is used to bind the NLS to DNA. We have now investigated the ability of this system displaying the SV40 NLS or HIV‐1 TAT peptide to enhance nuclear import of a minimised DNA construct more suitable for in vivo gene delivery: a minicircle.


Gene Therapy | 2005

Gene therapy progress and prospects: fetal gene therapy--first proofs of concept--some adverse effects.

Charles Coutelle; M Themis; Simon N. Waddington; Suzanne M. K. Buckley; Lisa G. Gregory; M Nivsarkar; Anna L. David; Donald Peebles; Boaz Weisz; Ch Rodeck

Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease based on the hypothesis that prenatal intervention may avoid the development of severe manifestations of early-onset disease, allow targeting of otherwise inaccessible tissues including expanding stem cell populations, induce tolerance against the therapeutic transgenic protein and thereby provide permanent somatic gene correction. This approach is particularly relevant in relation to prenatal screening programmes for severe genetic diseases as it could offer prevention as a third option to families faced with the prenatal diagnosis of a genetically affected child. Most investigations towards in utero gene therapy have been performed on mice and sheep fetuses as model animals for human disease and for the application of clinically relevant intervention techniques such as vector delivery by minimally invasive ultrasound guidance. Other animals such as dogs may serve as particular disease models and primates have to be considered in immediate preparation for clinical trials. Proof of principle for the hypothesis of fetal gene therapy has been provided during the last 2 years in mouse models for Crigler Najjar Disease, Lebers congenital amaurosis, Pompes disease and haemophilia B showing long-term postnatal therapeutic effects and tolerance of the transgenic protein after in utero gene delivery. However, recently we have also observed a high incidence of liver tumours after in utero application of an early form of third-generation equine infectious anaemia virus vectors with SIN configuration. These findings highlight the need for more investigations into the safety and the ethical aspects of in utero gene therapy as well as for science-based public information on risks and benefits of this preventive gene therapy approach before application in humans can be contemplated.

Collaboration


Dive into the Lisa G. Gregory's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Themis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Nivsarkar

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Anna L. David

University College London

View shared research outputs
Top Co-Authors

Avatar

Donald Peebles

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Bigger

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge