Lisa George
Marquette University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa George.
Journal of Chemical Physics | 2010
Patrick Z. El-Khoury; Lisa George; Aimable Kalume; Scott A. Reid; Bruce S. Ault; Alexander N. Tarnovsky
The photolysis of diiododifluoromethane (CF(2)I(2)) in condensed phases was studied by a combination of matrix isolation and ultrafast time-resolved spectroscopy, in concert with ab initio calculations. Photolysis at wavelengths of 355 or 266 nm of CF(2)I(2):Ar samples (1:5000) held at approximately 8 K yielded iso-CF(2)I(2) (F(2)C-I-I), a metastable isomer of CF(2)I(2), characterized here for the first time. The infrared (IR) spectra of this isomer were recorded in matrix experiments, and the derived positions of the C-F stretching modes are in very good agreement with the predictions of high level ab initio calculations, which show that the iso-form is a minimum on the CF(2)I(2) ground state potential energy surface. The formation of this isomer following 350 nm excitation of CF(2)I(2) in room temperature CCl(4) solutions was monitored through its intense C-F stretching mode by means of ultrafast time-resolved IR absorption. Together, matrix isolation and ultrafast IR absorption experiments suggest that the formation of iso-CF(2)I(2) occurs via recombination of CF(2)I radical and I atom. Ultrafast IR experiments detect a delayed rise of iso-CF(2)I-I absorption, placing an upper limit of 400 fs for the C-I bond dissociation and primary geminate recombination processes. The product absorption spectrum recorded 1 ns after 350 nm excitation of CF(2)I(2) in solution is virtually identical to the visible absorption spectrum of iso-CF(2)I(2) trapped in matrix isolation experiments [with subtracted I(2)(X) absorption]. The formation of this isomer in solution at room temperature has direct dynamic implications for the ultrafast production of molecular iodine from electronically excited CF(2)I(2).
Journal of Chemical Physics | 2011
Lisa George; Aimable Kalume; Brian J. Esselman; James Wagner; Robert J. McMahon; Scott A. Reid
Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr(3)) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr(3) isolated in Ar or Ne matrices at ~5 K yielded iso-CHBr(3); the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr(3) potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie ~200 kJ/mol above the global CHBr(3) minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr(2) + Br asymptote. The photochemistry of iso-CHBr(3) was investigated by selected wavelength laser irradiation into the intense S(0) → S(3) transition, which resulted in back photoisomerization to CHBr(3). Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered.
Journal of Chemical Physics | 2011
Thomas J. Preston; Maitreya Dutta; Brian J. Esselman; Aimable Kalume; Lisa George; Robert J. McMahon; Scott A. Reid; F. Fleming Crim
Photolysis of chloroiodomethane (CH(2)ClI) in cryogenic matrices followed by recombination of the nascent radical pair produces an isomer (CH(2)Cl-I) that features a halogen-halogen (Cl-I) bond. Using ultrafast laser pulses, it is possible to follow the formation of this isomer by transient electronic absorption in low-temperature matrices of N(2), CH(4), and Ar. Frequency-domain measurements provide vibrational and electronic spectra, and electronic structure calculations give the structures of the isomers and the minimum energy path that connects them. The ultrafast experiments cleave the C-I bond with a 267-nm photolysis pulse and probe the formation of the isomer at wavelengths between 435 nm and 510 nm. The longest wavelengths preferentially interrogate vibrationally excited molecules, and their transient absorption shows that the highly vibrationally excited isomer appears within 1 to 2 ps, depending on the matrix, likely reflecting the loss of 2000 cm(-1) or more of energy in a strong, inelastic collision of the fragments with the matrix. The subsequent relaxation of the vibrationally excited isomer occurs in 20 to 40 ps, a time that is comparable to those observed for halomethane molecules and their isomers in liquids and in supercritical CO(2). These observations suggest that the formation and initial relaxation of the isomer in dense media do not depend strongly on the identity of the surroundings.
Journal of Physical Chemistry A | 2010
Aimable Kalume; Lisa George; Patrick Z. El-Khoury; Alexander N. Tarnovsky; Scott A. Reid
We report experimental and computational studies of the photolysis of atmospherically important 1,2-dibromoethanes (1,2-C(2)X(4)Br(2); X = H, F) in Ar matrixes at 5 K. Using the pulsed deposition method, we find that significant conformational relaxation occurs for 1,2-C(2)H(4)Br(2) (EDB; observed anti/gauche ratio =30:1) but not for 1,2-C(2)F(4)Br(2) (TFEDB; anti/gauche = 3:1), which is traced to a larger barrier to rotation about the C-C bond in the latter. Laser photolysis of matrix-isolated EDB at 220 nm reveals the growth of infrared bands assigned to the gauche conformer and C(2)H(4)-Br(2) charge transfer complex (both as major products), and the C(2)H(4)Br radical and C(2)H(3)Br-HBr complex as minor (trace) products. The presence of the C(2)H(4)-Br(2) complex is confirmed in the UV/visible spectrum, which shows an intense charge transfer band at 237 nm that grows in intensity upon annealing. In contrast to previous reports, our experimental and computational results do not support a bridged structure for the C(2)H(4)Br radical in either the gas phase or matrix environments. We also report on the laser photolysis of matrix-isolated TFEDB at 220 nm. Here, the dominant photoproducts are the anti and gauche conformers of the C(2)F(4)Br radical, the vibrational and electronic spectra of which are characterized here for the first time. The increase in yield of radical for TFEDB vs EDB is consistent with the stronger C-Br bond in the fluoro-substituted radical species. The photochemistry of the C(2)F(4)Br radical following excitation at 266 nm was investigated and found to lead C-Br bond cleavage and formation of C(2)F(4). The implications of this work for the atmospheric and condensed phase photochemistry of the alkyl halides is emphasized.
Journal of Chemical Physics | 2010
Lisa George; Aimable Kalume; Patrick Z. El-Khoury; Alexander N. Tarnovsky; Scott A. Reid
The photolysis products of dibromodifluoromethane (CF(2)Br(2)) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF(2)Br(2):Ar samples (approximately 1:5000) held at approximately 5 K yielded iso-CF(2)Br(2) (F(2)CBrBr), a weakly bound isomer of CF(2)Br(2), which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF(2)Br(2) are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF(2)Br(2) potential energy surface, lying some 55 kcal/mol above the CF(2)Br(2) ground state. The energies of various stationary points on the CF(2)Br(2) potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF(2)Br(2) is an intermediate in the Br+CF(2)Br-->CF(2)+Br(2) reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF(2)Br(2). Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF(2)Br(2), particularly with respect to the existence of a roaming atom pathway leading to molecular products.
Journal of Chemical Physics | 2010
Alexander N. Tarnovsky; Lisa George; Aimable Kalume; Patrick Z. El-Khoury; Scott A. Reid
The photolysis products of dibromodifluoromethane (CF(2)Br(2)) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF(2)Br(2):Ar samples (approximately 1:5000) held at approximately 5 K yielded iso-CF(2)Br(2) (F(2)CBrBr), a weakly bound isomer of CF(2)Br(2), which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF(2)Br(2) are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF(2)Br(2) potential energy surface, lying some 55 kcal/mol above the CF(2)Br(2) ground state. The energies of various stationary points on the CF(2)Br(2) potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF(2)Br(2) is an intermediate in the Br+CF(2)Br-->CF(2)+Br(2) reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF(2)Br(2). Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF(2)Br(2), particularly with respect to the existence of a roaming atom pathway leading to molecular products.
Chemical Physics Letters | 2013
Aimable Kalume; Lisa George; Nicole Cunningham; Scott A. Reid
Journal of Molecular Structure | 2012
Lisa George; Aimable Kalume; Scott A. Reid; Brian J. Esselman; Robert J. McMahon
Chemical Physics Letters | 2012
Lisa George; Aimable Kalume; Scott A. Reid
Chemical Physics Letters | 2010
Patrick Z. El-Khoury; Lisa George; Aimable Kalume; Igor Schapiro; Massimo Olivucci; Alexander N. Tarnovsky; Scott A. Reid