Lisa Gherardini
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Gherardini.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Khuloud T. Al-Jamal; Lisa Gherardini; Giuseppe Bardi; Antonio Nunes; Chang Guo; Cyrill Bussy; M. Antonia Herrero; Alberto Bianco; Maurizio Prato; Kostas Kostarelos; Tommaso Pizzorusso
Stroke is the second cause of death worldwide with ischemic stroke accounting for 80% of all stroke insults. Caspase-3 activation contributes to brain tissue loss and downstream biochemical events that lead to programmed cell death after traumatic brain injury. Alleviation of symptoms following ischemic neuronal injury can be potentially achieved by either genetic disruption or pharmacological inhibition of caspases. Here, we studied whether silencing of Caspase-3 using carbon nanotube-mediated in vivo RNA interference (RNAi) could offer a therapeutic opportunity against stroke. Effective delivery of siRNA directly to the CNS has been shown to normalize phenotypes in animal models of several neurological diseases. It is shown here that peri-lesional stereotactic administration of a Caspase-3 siRNA (siCas 3) delivered by functionalized carbon nanotubes (f-CNT) reduced neurodegeneration and promoted functional preservation before and after focal ischemic damage of the rodent motor cortex using an endothelin-1 induced stroke model. These observations illustrate the opportunity offered by carbon nanotube-mediated siRNA delivery and gene silencing of neuronal tissue applicable to a variety of different neuropathological conditions where intervention at well localized brain foci may offer therapeutic and functional benefits.
Annals of Neurology | 2010
Arn M. J. M. van den Maagdenberg; Tommaso Pizzorusso; Simon Kaja; Nicole A. Terpolilli; Maryna Shapovalova; Freek E. Hoebeek; Curtis F. Barrett; Lisa Gherardini; Rob C. G. van de Ven; Boyan Todorov; Ludo A. M. Broos; Angelita Tottene; Zhenyu Gao; Mariann Fodor; Chris I. De Zeeuw; Rune R. Frants; Nikolaus Plesnila; Jaap J. Plomp; Daniela Pietrobon; Michel D. Ferrari
The CACNA1A gene encodes the pore‐forming subunit of neuronal CaV2.1 Ca2+ channels. In patients, the S218L CACNA1A mutation causes a dramatic hemiplegic migraine syndrome that is associated with ataxia, seizures, and severe, sometimes fatal, brain edema often triggered by only a mild head trauma.
PLOS Genetics | 2011
Loredana Leo; Lisa Gherardini; Virginia Barone; Maurizio De Fusco; Daniela Pietrobon; Tommaso Pizzorusso; Giorgio Casari
Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2R887/R887 mutants died just after birth, while heterozygous Atp1a2+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.
Molecular Pharmaceutics | 2013
Lorenzo Albertazzi; Lisa Gherardini; Marco Brondi; Sebastian Sulis Sato; Angelo Bifone; Tommaso Pizzorusso; Gian Michele Ratto; Giuseppe Bardi
Dendrimers have been described as one of the most tunable and therefore potentially applicable nanoparticles both for diagnostics and therapy. Recently, in order to realize drug delivery agents, most of the effort has been dedicated to the development of dendrimers that could internalize into the cells and target specific intracellular compartments in vitro and in vivo. Here, we describe cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals. Confocal imaging on primary neurons reveals that dendrimers are able to cross the cell membrane and reach intracellular localization following endocytosis. Moreover, functionalization of PAMAMs has a dramatic effect on their ability to diffuse in the CNS tissue in vivo and penetrate living neurons as shown by intraparenchymal or intraventricular injections. 100 nM G4-C12 PAMAM dendrimer already induces dramatic apoptotic cell death of neurons in vitro. On the contrary, G4 PAMAM does not induce apoptotic cell death of neural cells in the sub-micromolar range of concentration and induces low microglia activation in brain tissue after a week. Our detailed description of dendrimer distribution patterns in the CNS will facilitate the design of tailored nanomaterials in light of future clinical applications.
Nanomedicine: Nanotechnology, Biology and Medicine | 2012
Antonio Nunes; Cyrill Bussy; Lisa Gherardini; Moreno Meneghetti; Alberto Bianco; Maurizio Prato; Tommaso Pizzorusso; Khuloud T. Al-Jamal; Kostas Kostarelos
AIM Carbon nanotubes (CNTs) are increasingly being utilized in neurological applications as components of implants, electrodes or as delivery vehicles. Any application that involves implantation or injection of CNTs into the CNS needs to address the distribution and fate of the material following interaction and residence within the neuronal tissue. Here we report a preliminary study investigating the fate and structural integrity of amino-functionalized CNTs following stereotactic administration in the brain cortex. MATERIALS & METHODS The CNTs investigated had previously shown the capacity to internalize in various cell types of the CNS. An aqueous suspension of multiwalled CNT-NH(3) (+) was stereotactically injected into the mouse brain cortex. Their interaction with neural cells and consequent effects on the CNT structural integrity was investigated by optical, transmission electron microscopy and Raman spectroscopy of brain tissue sections for a period between 2 and 14 days post cortical administration. RESULTS & DISCUSSION The occurrence of severe nanotube structure deformation leading to partial degradation of the chemically functionalized-multiwalled CNT-NH(3) (+) in vivo following internalization within microglia was revealed even at early time points. Such initial observations of CNT degradation within the brain tissue render further systematic investigations using high-resolution tools imperative.
Biomaterials | 2010
Giuseppe Bardi; Maria Ada Malvindi; Lisa Gherardini; Mario Costa; Pier Paolo Pompa; Roberto Cingolani; Tommaso Pizzorusso
Nanoparticles have an enormous potential for the development of applications in biomedicine such as gene or drug delivery. We developed and characterized NH(2) functionalized CdSe/ZnS quantum dot (QD)-doped SiO(2) nanoparticles (NPs) with both imaging and gene carrier capabilities. We show that QD-doped SiO(2) NPs are internalized by primary cortical neural cells without inducing cell death in vitro and in vivo. Moreover, the ability to bind, transport and release DNA into the cell allows GFP-plasmid transfection of NIH-3T3 and human neuroblastoma SH-SY5Y cell lines. QD-doped SiO(2) NPs properties make them a valuable tool for future nanomedicine application.
PLOS ONE | 2013
Giuseppe Bardi; Antonio Nunes; Lisa Gherardini; Katie Bates; Khuloud T. Al-Jamal; Claire Gaillard; Maurizio Prato; Alberto Bianco; Tommaso Pizzorusso; Kostas Kostarelos
The potential use of functionalized carbon nanotubes (f-CNTs) for drug and gene delivery to the central nervous system (CNS) and as neural substrates makes the understanding of their in vivo interactions with the neural tissue essential. The aim of this study was to investigate the interactions between chemically functionalized multi-walled carbon nanotubes (f-MWNTs) and the neural tissue following cortical stereotactic administration. Two different f-MWNT constructs were used in these studies: shortened (by oxidation) amino-functionalized MWNT (oxMWNT-NH3 +) and amino-functionalized MWNT (MWNT-NH3 +). Parenchymal distribution of the stereotactically injected f-MWNTs was assessed by histological examination. Both f-MWNT were uptaken by different types of neural tissue cells (microglia, astrocytes and neurons), however different patterns of cellular internalization were observed between the nanotubes. Furthermore, immunohistochemical staining for specific markers of glial cell activation (GFAP and CD11b) was performed and secretion of inflammatory cytokines was investigated using real-time PCR (qRT-PCR). Injections of both f-MWNT constructs led to a local and transient induction of inflammatory cytokines at early time points. Oxidation of nanotubes seemed to induce significant levels of GFAP and CD11b over-expression in areas peripheral to the f-MWNT injection site. These results highlight the importance of nanotube functionalization on their interaction with brain tissue that is deemed critical for the development nanotube-based vector systems for CNS applications.
Cerebral Cortex | 2015
Lisa Gherardini; Mariangela Gennaro; Tommaso Pizzorusso
Ischemic stroke insults may lead to chronic functional limitations that adversely affect patient movements. Partial motor recovery is thought to be sustained by neuronal plasticity, particularly in areas close to the lesion site. It is still unknown if treatments acting exclusively on cortical plasticity of perilesional areas could result in behavioral amelioration. We tested whether enhancing plasticity in the ipsilesional cortex using local injections of chondroitinase ABC (ChABC) could promote recovery of skilled motor function in a focal cortical ischemia of forelimb motor cortex in rats. Using the skilled reaching test, we found that acute and delayed ChABC treatment induced recovery of impaired motor skills in treated rats. vGLUT1, vGLUT2, and vGAT staining indicated that functional recovery after acute ChABC treatment was associated with local plastic modification of the excitatory cortical circuitry positive for VGLUT2. ChABC effects on vGLUT2 staining were present only in rats undergoing behavioral training. Thus, the combination of treatments targeting the CSPG component of the extracellular matrix in perilesional areas and rehabilitation could be sufficient to enhance functional recovery from a focal stroke.
Cellular and Molecular Life Sciences | 2014
Lisa Gherardini; Giuseppe Bardi; Mariangela Gennaro; Tommaso Pizzorusso
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
PLOS ONE | 2014
Ilaria Naldi; Monia Taranta; Lisa Gherardini; Gualtiero Pelosi; Federica Viglione; Settimio Grimaldi; Luca Pani; Caterina Cinti
Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.