Lisa Godfrey
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Godfrey.
Gut | 2006
Sarah Waller; Mark Tremelling; Fran Bredin; Lisa Godfrey; Joanna M. M. Howson; Miles Parkes
Background and aims: Genetic association between Crohn’s disease (CD) and OCTN1 (SLC22A4) C1672T/OCTN2 (SLC22A5) G−207C variants in IBD5 has recently been reported. These genes encode solute carriers and the association was suggested to be distinct from the background IBD5 risk haplotype. There have been conflicting reports of the association between markers in the IBD5 region and ulcerative colitis (UC) and interaction (epistasis) between this locus and CARD15. Our aim was to ascertain the contribution of OCTN variants to UC and CD in a large independent UK dataset, to seek genetic evidence that the OCTN association is distinct from the IBD5 risk haplotype and to identify interactions between the IBD5 and CARD15 loci. Methods: A total of 1104 unrelated Caucasian subjects with inflammatory bowel disease (IBD) (496 CD, 512 UC, 96 indeterminate) and 750 ethnically matched controls were genotyped for three single nucleotide polymorphisms (SNPs) in the CD associated genes (OCTN1+1672, OCTN2−207, and IGR2230), and two flanking IBD5 tagging SNPs, IGR2096 and IGR3096. Data were analysed by logistic regression methods within STATA. Results: OCTN variants were as strongly associated with UC and IBD overall as they were with CD (p = 0.0001; OR 1.3 (95% confidence interval 1.1–1.5)). OCTN variants were in tight linkage disequilibrium with the extended IBD5 risk haplotype D′ 0.79 and 0.88, and r2 = 0.62 and 0.72 for IGR2096 and 3096, respectively. There was no deviation from a multiplicative model of interaction between CARD15 and IBD5 on the penetrance scale. Conclusions: The OCTN variants were associated with susceptibility to IBD overall. The effect was equally strong in UC and CD. Although OCTN variants may account for the increased risk of IBD associated with IBD5, a role for other candidate genes within this extended haplotype was not excluded. There was no statistical evidence of interaction between CARD15 and either OCTN or IBD5 variants in susceptibility to IBD.
Diabetes | 2011
Naila Rabbani; Lisa Godfrey; Mingzhan Xue; Fozia Shaheen; Michele Geoffrion; Ross W. Milne; Paul J. Thornalley
OBJECTIVE To study whether modification of LDL by methylglyoxal (MG), a potent arginine-directed glycating agent that is increased in diabetes, is associated with increased atherogenicity. RESEARCH DESIGN AND METHODS Human LDL was isolated and modified by MG in vitro to minimal extent (MGmin-LDL) as occurs in vivo. Atherogenic characteristics of MGmin-LDL were characterized: particle size, proteoglycan-binding, susceptibility to aggregation, LDL and non-LDL receptor–binding, and aortal deposition. The major site of modification of apolipoprotein B100 (apoB100) modification was investigated by mass spectrometric peptide mapping. RESULTS MGmin-LDL contained 1.6 molar equivalents of MG modification—mostly hydroimidazolone—as found in vivo. MGmin-LDL had decreased particle size, increased binding to proteoglycans, and increased aggregation in vitro. Cell culture studies showed that MGmin-LDL was bound by the LDL receptor but not by the scavenger receptor and had increased binding affinity for cell surface heparan sulfate–containing proteoglycan. Radiotracer studies in rats showed that MGmin-LDL had a similar fractional clearance rate in plasma to unmodified LDL but increased partitioning onto the aortal wall. Mass spectrometry peptide mapping identified arginine-18 as the hotspot site of apoB100 modification in MGmin-LDL. A computed structural model predicted that MG modification of apoB100 induces distortion, increasing exposure of the N-terminal proteoglycan–binding domain on the surface of LDL. This likely mediates particle remodeling and increases proteoglycan binding. CONCLUSIONS MG modification of LDL forms small, dense LDL with increased atherogenicity that provides a new route to atherogenic LDL and may explain the escalation of cardiovascular risk in diabetes and the cardioprotective effect of metformin.
BMC Medical Genetics | 2007
Jason D. Cooper; Deborah J. Smyth; Rebecca Bailey; Felicity Payne; Kate Downes; Lisa Godfrey; Jennifer Masters; Lauren Zeitels; Adrian Vella; Neil M Walker; John A. Todd
BackgroundAs genes associated with immune-mediated diseases have an increased prior probability of being associated with other immune-mediated diseases, we tested three such genes, IL23R , IRF5 and CD40 , for an association with type 1 diabetes. In addition, we tested seven genes, TAF5L , PDCD1, TCF7, IL12B , IL6 , ICAM1 and TBX21 , with published marginal or inconsistent evidence of an association with type 1 diabetes.MethodsWe genotyped reported polymorphisms of the ten genes, nonsynonymous SNPs (nsSNPs) and, for the IL12B and IL6 regions, tag SNPs in up to 7,888 case, 8,858 control and 3,142 parent-child trio samples. In addition, we analysed data from the Wellcome Trust Case Control Consortium genome-wide association study to determine whether there was any further evidence of an association in each gene region.ResultsWe found some evidence of associations between type 1 diabetes and TAF5L , PDCD1 , TCF7 and IL6 (ORs = 1.05 – 1.13; P = 0.0291 – 4.16 × 10-4). No evidence of an association was obtained for IL12B , IRF5 , IL23R, ICAM1, TBX21 and CD40 , although there was some evidence of an association (OR = 1.10; P = 0.0257) from the genome-wide association study for the ICAM1 region.ConclusionWe failed to exclude the possibility of some effect in type 1 diabetes for TAF5L , PDCD1 , TCF7 , IL6 and ICAM1 . Additional studies, of these and other candidate genes, employing much larger sample sizes and analysis of additional polymorphisms in each gene and its flanking region will be required to ascertain their contributions to type 1 diabetes susceptibility.
Diabetes | 2008
Sarah Field; Sergey Nejentsev; Neil Walker; Joanna M. M. Howson; Lisa Godfrey; Jennifer Jolley; Matthew Hardy; John A. Todd
OBJECTIVE— The nonclassical major histocompatibility complex (MHC) class I chain-related molecules (MICs), encoded within the MHC, function in immunity. The transmembrane polymorphism in MICA (MICA-STR) has been reported to be associated with type 1 diabetes. In this study, we directly sequenced both of the highly polymorphic MIC genes (MICA and MICB) in order to establish whether they are associated with type 1 diabetes independently of the known type 1 diabetes MHC class II genes HLA-DRB1 and HLA-DQB1. RESEARCH DESIGN AND METHODS— We developed a sequencing-based typing method and genotyped MICA and MICB in 818 families (2,944 individuals) with type 1 diabetes from the U.K. and U.S. (constructing the genotype from single nucleotide polymorphisms in exons 2–4 of MICA and 2–5 of MICB) and additionally genotyped the MICA-STR in 2,023 type 1 diabetic case subjects and 1,748 control subjects from the U.K. We analyzed the association of the MICA and MICB alleles and genotypes with type 1 diabetes using regression methods. RESULTS— We identified known MICA and MICB alleles and discovered four new MICB alleles. Based on this large-scale and detailed genotype data, we found no evidence for association of MICA and MICB with type 1 diabetes independently of the MHC class II genes (MICA P = 0.08, MICA-STR P = 0.76, MICB P = 0.03, after conditioning on HLA-DRB1 and HLA-DQB1). CONCLUSIONS— Common MICA and MICB genetic variations including the MICA-STR are not associated, in a primary way, with susceptibility to type 1 diabetes.
Nutrition & Diabetes | 2014
Lisa Godfrey; N. Yamada-Fowler; J Smith; Paul J. Thornalley; Naila Rabbani
Background/Objectives:Decreased plasma concentration of high-density lipoprotein cholesterol (HDL-C) is a risk factor linked to increased risk of cardiovascular disease (CVD). Decreased anti-atherogenic properties of HDL are also implicated in increased CVD risk. The cause is unknown but has been linked to impaired glucose tolerance. The aim of this study was to quantify the modification of HDL by methylglyoxal and related dicarbonyls in healthy people and patients with type 2 diabetes characterise structural, functional and physiological consequences of the modification and predict the importance in high CVD risk groups.Subjects/Methods:Major fractions of HDL, HDL2 and HDL3 were isolated from healthy human subjects and patients with type 2 diabetes and fractions modified by methylglyoxal and related dicarbonyl metabolites quantified. HDL2 and HDL3 were glycated by methylglyoxal to minimum extent in vitro and molecular, functional and physiological characteristics were determined. A one-compartment model of HDL plasma clearance was produced including formation and clearance of dicarbonyl-modified HDL.Results:HDL modified by methylglyoxal and related dicarbonyl metabolites accounted for 2.6% HDL and increased to 4.5% in patients with type 2 diabetes mellitus (T2DM). HDL2 and HDL3 were modified by methylglyoxal to similar extents in vitro. Methylglyoxal modification induced re-structuring of the HDL particles, decreasing stability and plasma half-life in vivo. It occurred at sites of apolipoprotein A-1 in HDL linked to membrane fusion, intramolecular bonding and ligand binding. Kinetic modelling of methylglyoxal modification of HDL predicted a negative correlation of plasma HDL-C with methylglyoxal-modified HDL. This was validated clinically. It also predicted that dicarbonyl modification produces 2–6% decrease in total plasma HDL and 5–13% decrease in functional HDL clinically.Conclusions:These results suggest that methylglyoxal modification of HDL accelerates its degradation and impairs its functionality in vivo, likely contributing to increased risk of CVD—particularly in high CVD risk groups.
PLOS ONE | 2012
James R. Larkin; Fang Zhang; Lisa Godfrey; Guerman Molostvov; Daniel Zehnder; Naila Rabbani; Paul J. Thornalley
Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy.
BMC Genetics | 2006
Gerard A. Morris; Christopher E. Lowe; Jason D. Cooper; Felicity Payne; Adrian Vella; Lisa Godfrey; John S. Hulme; Neil M Walker; Barry Healy; Alex C. Lam; Paul A. Lyons; John A. Todd
BackgroundThe aetiology of the autoimmune disease type 1 diabetes (T1D) involves many genetic and environmental factors. Evidence suggests that innate immune responses, including the action of interferons, may also play a role in the initiation and/or pathogenic process of autoimmunity. In the present report, we have adopted a linkage disequilibrium (LD) mapping approach to test for an association between T1D and three regions encompassing 13 interferon alpha (IFNA) genes, interferon omega-1 (IFNW1), interferon beta-1 (IFNB1), interferon gamma (IFNG) and the interferon consensus-sequence binding protein 1 (ICSBP1).ResultsWe identified 238 variants, most, single nucleotide polymorphisms (SNPs), by sequencing IFNA, IFNB1, IFNW1 and ICSBP1, 98 of which where novel when compared to dbSNP build 124. We used polymorphisms identified in the SeattleSNP database for INFG. A set of tag SNPs was selected for each of the interferon and interferon-related genes to test for an association between T1D and this complex gene family. A total of 45 tag SNPs were selected and genotyped in a collection of 472 multiplex families.ConclusionWe have developed informative sets of SNPs for the interferon and interferon related genes. No statistical evidence of a major association between T1D and any of the interferon and interferon related genes tested was found.
BMC Genetics | 2007
Sergey Nejentsev; Luc J. Smink; Deborah J. Smyth; Rebecca Bailey; Christopher E. Lowe; Felicity Payne; Jennifer Masters; Lisa Godfrey; Alex C. Lam; Oliver Burren; Helen Stevens; Sarah Nutland; Neil M Walker; Anne Smith; Rebecca C.J. Twells; Bryan J. Barratt; Charmain Wright; Lisa French; Yuan Chen; Panagiotis Deloukas; Jane Rogers; Ian Dunham; John A. Todd
BackgroundIn an effort to locate susceptibility genes for type 1 diabetes (T1D) several genome-wide linkage scans have been undertaken. A chromosomal region designated IDDM10 retained genome-wide significance in a combined analysis of the main linkage scans. Here, we studied sequence polymorphisms in 23 Mb on chromosome 10p12-q11, including the putative IDDM10 region, to identify genes associated with T1D.ResultsInitially, we resequenced the functional candidate genes, CREM and SDF1, located in this region, genotyped 13 tag single nucleotide polymorphisms (SNPs) and found no association with T1D. We then undertook analysis of the whole 23 Mb region. We constructed and sequenced a contig tile path from two bacterial artificial clone libraries. By comparison with a clone library from an unrelated person used in the Human Genome Project, we identified 12,058 SNPs. We genotyped 303 SNPs and 25 polymorphic microsatellite markers in 765 multiplex T1D families and followed up 22 associated polymorphisms in up to 2,857 families. We found nominal evidence of association in six loci (P = 0.05 – 0.0026), located near the PAPD1 gene. Therefore, we resequenced 38.8 kb in this region, found 147 SNPs and genotyped 84 of them in the T1D families. We also tested 13 polymorphisms in the PAPD1 gene and in five other loci in 1,612 T1D patients and 1,828 controls from the UK. Overall, only the D10S193 microsatellite marker located 28 kb downstream of PAPD1 showed nominal evidence of association in both T1D families and in the case-control sample (P = 0.037 and 0.03, respectively).ConclusionWe conclude that polymorphisms in the CREM and SDF1 genes have no major effect on T1D. The weak T1D association that we detected in the association scan near the PAPD1 gene may be either false or due to a small genuine effect, and cannot explain linkage at the IDDM10 region.
Human Molecular Genetics | 2004
Sergey Nejentsev; Lisa Godfrey; Hywel Snook; Helen Rance; Sarah Nutland; Neil M Walker; Alex C. Lam; Cristian Guja; Constantin Ionescu-Tirgoviste; Dag E. Undlien; Kjersti S. Rønningen; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; Melanie J. Newport; David G. Clayton; John A. Todd
Diabetes | 2004
Sergey Nejentsev; Jason D. Cooper; Lisa Godfrey; Joanna M. M. Howson; Helen Rance; Sarah Nutland; Neil Walker; Cristian Guja; Constantin Ionescu-Tirgoviste; David A. Savage; Dag E. Undlien; Kjersti S. Rønningen; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; Kathleen M. Gillespie; Susan M. Ring; David P. Strachan; Barry Widmer; David B. Dunger; John A. Todd