Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa H. Orfe is active.

Publication


Featured researches published by Lisa H. Orfe.


Antimicrobial Agents and Chemotherapy | 2010

blaCMY-2-Positive IncA/C Plasmids from Escherichia coli and Salmonella enterica Are a Distinct Component of a Larger Lineage of Plasmids

Douglas R. Call; Randall S. Singer; Da Meng; Shira L. Broschat; Lisa H. Orfe; Janet M. Anderson; David R. Herndon; Lowell S. Kappmeyer; Joshua B. Daniels; Thomas E. Besser

ABSTRACT Large multidrug resistance plasmids of the A/C incompatibility complex (IncA/C) have been found in a diverse group of Gram-negative commensal and pathogenic bacteria. We present three completed sequences from IncA/C plasmids that originated from Escherichia coli (cattle) and Salmonella enterica serovar Newport (human) and that carry the cephamycinase gene blaCMY-2. These large plasmids (148 to 166 kbp) share extensive sequence identity and synteny. The most divergent plasmid, peH4H, has lost several conjugation-related genes and has gained a kanamycin resistance region. Two of the plasmids (pAM04528 and peH4H) harbor two copies of blaCMY-2, while the third plasmid (pAR060302) harbors a single copy of the gene. The majority of single-nucleotide polymorphisms comprise nonsynonymous mutations in floR. A comparative analysis of these plasmids with five other published IncA/C plasmids showed that the blaCMY-2 plasmids from E. coli and S. enterica are genetically distinct from those originating from Yersinia pestis and Photobacterium damselae and distal to one originating from Yersinia ruckeri. While the overall similarity of these plasmids supports the likelihood of recent movements among E. coli and S. enterica hosts, their greater divergence from Y. pestis or Y. ruckeri suggests less recent plasmid transfer among these pathogen groups.


Antimicrobial Agents and Chemotherapy | 2010

Discovery of a Gene Conferring Multiple-Aminoglycoside Resistance in Escherichia coli

Margaret A. Davis; Katherine N. K. Baker; Lisa H. Orfe; Devendra H. Shah; Thomas E. Besser; Douglas R. Call

ABSTRACT Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria.


Microbiology | 2011

Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system

Devendra H. Shah; Xiaohui Zhou; Tarek Addwebi; Margaret A. Davis; Lisa H. Orfe; Douglas R. Call; Jean Guard; Thomas E. Besser

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.


Infection and Immunity | 2010

Development of Two Animal Models To Study the Function of Vibrio parahaemolyticus Type III Secretion Systems

Pablo Piñeyro; Xiaohui Zhou; Lisa H. Orfe; Patrick J. Friel; Kevin K. Lahmers; Douglas R. Call

ABSTRACT Vibrio parahaemolyticus is an emerging food- and waterborne pathogen that encodes two type III secretion systems (T3SSs). Previous studies have linked type III secretion system 1 (T3SS1) to cytotoxicity and T3SS2 to intestinal fluid accumulation, but animal challenge models needed to study these phenomena are limited. In this study we evaluated the roles of the T3SSs during infection using two novel animal models: a model in which piglets were inoculated orogastrically and a model in which mice were inoculated in their lungs (intrapulmonarily). The bacterial strains employed in this study had equivalent growth rates and beta-hemolytic activity based on in vitro assays. Inoculation of 48-h-old conventional piglets with 1011 CFU of the wild-type strain (NY-4) or T3SS1 deletion mutant strains resulted in acute, self-limiting diarrhea, whereas inoculation with a T3SS2 deletion mutant strain failed to produce any clinical symptoms. Intrapulmonary inoculation of C57BL/6 mice with the wild-type strain and T3SS2 deletion mutant strains (5 × 105 CFU) induced mortality or a moribund state within 12 h (80 to 100% mortality), whereas inoculation with a T3SS1 deletion mutant or a T3SS1 T3SS2 double deletion mutant produced no mortality. Bacteria were recovered from multiple organs regardless of the strain used in the mouse model, indicating that the mice were capable of clearing the lung infection in the absence of a functional T3SS1. Because all strains had a similar beta-hemolysin phenotype, we surmise that thermostable direct hemolysin (TDH) plays a limited role in these models. The two models introduced herein produce robust results and provide a means to determine how different T3SS1 and T3SS2 effector proteins contribute to pathogenesis of V. parahaemolyticus infection.


Environmental Microbiology | 2016

Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves

Jinxin Liu; Zhe Zhao; Lisa H. Orfe; Murugan Subbiah; Douglas R. Call

We determined if antibiotics residues that are excreted from treated animals can contribute to persistence of resistant bacteria in agricultural environments. Administration of ceftiofur, a third-generation cephalosporin, resulted in a ∼ 3 log increase in ceftiofur-resistant Escherichia coli found in the faeces and pen soils by day 10 (P = 0.005). This resistant population quickly subsided in faeces, but was sustained in the pen soil (∼ 4.5 log bacteria g(-1)) throughout the trial (1 month). Florfenicol treatment resulted in a similar pattern although the loss of florfenicol-resistant E. coli was slower for faeces and remained stable at ∼ 6 log bacteria g(-1) in the soil. Calves were treated in pens where eGFP-labelled E. coli were present in the bedding (∼ 2 log g(-1)) resulting in amplification of the eGFP E. coli population ∼ 2.1 log more than eGFP E. coli populations in pens with untreated calves (day 4; P < 0.005). Excreted residues accounted for > 10-fold greater contribution to the bedding reservoir compared with shedding of resistant bacteria in faeces. Treatment with therapeutic doses of ceftiofur or florfenicol resulted in 2-3 log g(-1) more bacteria than the estimated ID50 (2.83 CFU g(-1)), consistent with a soil-borne reservoir emerging after antibiotic treatment that can contribute to the long-term persistence of antibiotic resistance in animal agriculture.


Applied and Environmental Microbiology | 2011

Genotypic-Phenotypic Discrepancies between Antibiotic Resistance Characteristics of Escherichia coli Isolates from Calves in Management Settings with High and Low Antibiotic Use

Margaret A. Davis; Thomas E. Besser; Lisa H. Orfe; Katherine N. K. Baker; Amelia S. Lanier; Shira L. Broschat; Daniel New; Douglas R. Call

ABSTRACT We hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains of Escherichia coli for their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fishers exact test, P = 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fishers exact test, P < 0.0001). Two novel resistance genes were discovered in E. coli isolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative for bla CMY-2 had mutations in the promoter regions of the chromosomal E. coli ampC gene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospital E. coli isolates have been reported worldwide. Prevalence or rates of E. coli ampC promoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments.


Applied and Environmental Microbiology | 2014

Ciprofloxacin Residues in Municipal Biosolid Compost Do Not Selectively Enrich Populations of Resistant Bacteria

Caitlin P. Youngquist; Jinxin Liu; Lisa H. Orfe; Stephen S. Jones; Douglas R. Call

ABSTRACT Biosolids and livestock manure are valuable high-carbon soil amendments, but they commonly contain antibiotic residues that might persist after land application. While composting reduces the concentration of extractable antibiotics in these materials, if the starting concentration is sufficiently high then remaining residues could impact microbial communities in the compost and soil to which these materials are applied. To examine this issue, ciprofloxacin was added to biosolid compost feedstock to achieve a total concentration of 19 ppm, approximately 5-fold higher than that normally detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (1 to 3.5 ppm). This feedstock was placed into mesh bags that were buried in aerated compost bays. Once a week, a set of bags was removed and analyzed (treated and untreated, three replicates of each; 4 weeks). Addition of ciprofloxacin had no effect on the recovery of resistant bacteria at any time point (P = 0.86), and a separate bioassay showed that aqueous extractions from materials with an estimated 59 ppm ciprofloxacin had no effect on the growth of a susceptible strain of Escherichia coli (P = 0.28). Regression analysis showed that growth of the susceptible strain of E. coli can be reduced given a sufficiently high concentration of ciprofloxacin (P < 0.007), a result that is consistent with adsorption being the primary mechanism of sequestration. While analytical methods detected biologically significant concentrations of ciprofloxacin in the materials tested here, the culture-based methods were consistent with the materials having sufficient adsorptive capacity to prevent typical concentrations of ciprofloxacin residues from selectively enriching populations of resistant bacteria.


Applied and Environmental Microbiology | 2015

Entericidin Is Required for a Probiotic Treatment (Enterobacter sp. Strain C6-6) To Protect Trout from Cold-Water Disease Challenge

Carla B. Schubiger; Lisa H. Orfe; Ponnerassery S. Sudheesh; Kenneth D. Cain; Devendra H. Shah; Douglas R. Call

ABSTRACT Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens.


Journal of Microbiological Methods | 2010

Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

Margaret A. Davis; Ji Youn Lim; Yesim Soyer; Heather Harbottle; Yung-Fu Chang; Daniel New; Lisa H. Orfe; Thomas E. Besser; Douglas R. Call

A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing inter-laboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories.


Bioresource Technology | 2015

The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli : menaquinone reduction

Timothy D. Harrington; Vi N. Tran; Abdelrhman Mohamed; Ryan S. Renslow; Saeid Biria; Lisa H. Orfe; Douglas R. Call; Haluk Beyenal

The aim of this work was to elucidate the mechanism of mediated microbial electrosynthesis via neutral red from an electrode to fermenting Escherichia coli cultures in a bioelectrochemical system. Chemical reduction of NAD(+) by reduced neutral red did not occur as predicted. Instead, neutral red was shown to reduce the menaquinone pool in the inner bacterial membrane. The reduced menaquinone pool altered fermentative metabolite production via the arcB redox-sensing cascade in the absence of terminal electron acceptors. When the acceptors DMSO, fumarate, or nitrate were provided, as many as 19% of the electrons trapped in the reduced acceptors were derived from the electrode. These results demonstrate the mechanism of neutral red-mediated microbial electrosynthesis during fermentation as well as how neutral red enables microbial electrosynthesis of reduced terminal electron acceptors.

Collaboration


Dive into the Lisa H. Orfe's collaboration.

Top Co-Authors

Avatar

Douglas R. Call

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Besser

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Davis

Washington State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Jinxin Liu

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Devendra H. Shah

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin K. Lahmers

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Lauren J. Eberhart

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xiaohui Zhou

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Ashish A. Sawant

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge