Lisa Hopcroft
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Hopcroft.
Blood | 2014
Paolo Gallipoli; Amy Cook; Susan Rhodes; Lisa Hopcroft; Helen Wheadon; Anthony D. Whetton; Heather G. Jørgensen; Ravi Bhatia; Tessa L. Holyoake
Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice with minimal effects on primitive CD34(+) cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients.
Nature | 2016
Sheela A. Abraham; Lisa Hopcroft; Emma Carrick; Mark E. Drotar; Karen Dunn; Andrew J. K. Williamson; Koorosh Korfi; Pablo Baquero; Laura Park; Mary T. Scott; Francesca Pellicano; Andrew Pierce; Mhairi Copland; Craig Nourse; Sean M. Grimmond; David Vetrie; Anthony D. Whetton; Tessa L. Holyoake
Summary Chronic myeloid leukaemia (CML) arises following transformation of a haemopoietic stem cell (HSC) by protein-tyrosine kinase BCR-ABL1. Direct inhibition of BCR-ABL1 kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSC), which maintain CML. LSC are independent of BCR-ABL1 for survival, providing a rationale to identify and target kinase-independent pathways. Here we show using proteomics, transcriptomics and network analyses, that in human LSC aberrantly expressed proteins, in both imatinib-responder and non-responder patients are modulated in concert with p53 and c-Myc regulation. Perturbation of both p53 and c-Myc, not BCR-ABL1 itself, leads to synergistic kill, differentiation and near elimination of transplantable human LSC in mice, whilst sparing normal HSC. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSC can be eradicated.
Stem Cells | 2014
Francesca Pellicano; Mary T. Scott; G. Vignir Helgason; Lisa Hopcroft; Elaine K. Allan; Mark Aspinall-O'Dea; Mhairi Copland; Andrew Pierce; Brian J. P. Huntly; Anthony D. Whetton; Tessa L. Holyoake
Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR‐ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL‐specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR‐ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over‐expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA‐mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI‐induced apoptosis. These data demonstrate that TKI‐induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network. Stem Cells 2014;32:2324–2337
Cancer Discovery | 2016
Mary T. Scott; Koorosh Korfi; Peter Saffrey; Lisa Hopcroft; Ross Kinstrie; Francesca Pellicano; Carla Guenther; Paolo Gallipoli; Michelle Cruz; Karen Dunn; Heather G. Jørgensen; Jennifer Cassels; Ashley Hamilton; Andrew Crossan; Amy Sinclair; Tessa L. Holyoake; David Vetrie
A major obstacle to curing chronic myeloid leukemia (CML) is residual disease maintained by tyrosine kinase inhibitor (TKI)-persistent leukemic stem cells (LSC). These are BCR-ABL1 kinase independent, refractory to apoptosis, and serve as a reservoir to drive relapse or TKI resistance. We demonstrate that Polycomb Repressive Complex 2 is misregulated in chronic phase CML LSCs. This is associated with extensive reprogramming of H3K27me3 targets in LSCs, thus sensitizing them to apoptosis upon treatment with an EZH2-specific inhibitor (EZH2i). EZH2i does not impair normal hematopoietic stem cell survival. Strikingly, treatment of primary CML cells with either EZH2i or TKI alone caused significant upregulation of H3K27me3 targets, and combined treatment further potentiated these effects and resulted in significant loss of LSCs compared to TKI alone, in vitro, and in long-term bone marrow murine xenografts. Our findings point to a promising epigenetic-based therapeutic strategy to more effectively target LSCs in patients with CML receiving TKIs. SIGNIFICANCE In CML, TKI-persistent LSCs remain an obstacle to cure, and approaches to eradicate them remain a significant unmet clinical need. We demonstrate that EZH2 and H3K27me3 reprogramming is important for LSC survival, but renders LSCs sensitive to the combined effects of EZH2i and TKI. This represents a novel approach to more effectively target LSCs in patients receiving TKI treatment. Cancer Discov; 6(11); 1248-57. ©2016 AACR.See related article by Xie et al., p. 1237This article is highlighted in the In This Issue feature, p. 1197.
BMC Bioinformatics | 2011
Jose M. G. Izarzugaza; Lisa Hopcroft; Anja Barešić; Christine A. Orengo; Andrew C. R. Martin; Alfonso Valencia
BackgroundProtein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites.ResultsPathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families.ConclusionsDisease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.
Blood | 2016
Amy Sinclair; Laura Park; Mansi Shah; Mark E. Drotar; Simon D. J. Calaminus; Lisa Hopcroft; Ross Kinstrie; Amelie V. Guitart; Karen Dunn; Sheela A. Abraham; Owen J. Sansom; Alison M. Michie; Laura M. Machesky; Kamil R. Kranc; Gerard J. Graham; Francesca Pellicano; Tessa L. Holyoake
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal.
Biochemical Society Transactions | 2014
Parto Toofan; David Irvine; Lisa Hopcroft; Mhairi Copland; Helen Wheadon
CML (chronic myeloid leukaemia) is characterized by the presence of the oncogenic tyrosine kinase fusion protein BCR (breakpoint cluster region)-Abl, responsible for driving the disease. Current TKI (tyrosine kinase inhibitor) therapies effectively inhibit BCR-Abl to control CML in the majority of patients, but do not eliminate the LSC (leukaemic stem cell) population, which becomes quiescent following treatment. Patients require long-term treatment to sustain remission; alternative strategies are therefore required, either alone or in combination with TKIs to eliminate the LSCs and provide a cure. The embryonic morphogenetic pathways play a key role in haemopoiesis with recent evidence suggesting LSCs are more dependent on these signals following chemotherapy than normal HSCs (haemopoietic stem cells). Recent evidence in the literature and from our group has revealed that the BMP (bone morphogenetic protein) pathway is differentially expressed in CML patients compared with normal donors. In the present review, we explore the role that BMP signalling plays in oesteoblast differentiation, HSC maintenance and the implication of altered BMP signalling on LSC persistence in the BM (bone marrow) niche. Overall, we highlight the BMP pathway as a potential target for developing LSC-directed therapies in CML in the future.
Blood | 2017
Anuradha Tarafdar; Lisa Hopcroft; Paolo Gallipoli; Francesca Pellicano; Jennifer Cassels; Alan Hair; Koorosh Korfi; Heather G. Jørgensen; David Vetrie; Tessa L. Holyoake; Alison M. Michie
Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has significantly affected chronic myeloid leukemia (CML) treatment, transforming the life expectancy of patients; however the risk for relapse remains, due to persistence of leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that result in LSC survival and develop new therapeutic approaches. We now show that major histocompatibility complex (MHC)-II and its master regulator class II transactivator (CIITA) are downregulated in CML compared with non-CML stem/progenitor cells in a BCR-ABL kinase-independent manner. Interferon γ (IFN-γ) stimulation resulted in an upregulation of CIITA and MHC-II in CML stem/progenitor cells; however, the extent of IFN-γ-induced MHC-II upregulation was significantly lower than when compared with non-CML CD34+ cells. Interestingly, the expression levels of CIITA and MHC-II significantly increased when CML stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, mixed lymphocyte reactions revealed that exposure of CD34+ CML cells to IFN-γ or RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. Taken together, these data suggest that cytokine-driven JAK-mediated signals, provided by CML cells and/or the microenvironment, antagonize MHC-II expression, highlighting the potential for developing novel immunomodulatory-based therapies to enable host-mediated immunity to assist in the detection and eradication of CML stem/progenitor cells.
Journal of the National Cancer Institute | 2018
Rebecca Mitchell; Lisa Hopcroft; Pablo Baquero; Elaine K. Allan; Kay Hewit; Daniel James; Graham Hamilton; Arunima Mukhopadhyay; Jim O'Prey; Alan Hair; Junia V. Melo; Edmond Chan; Kevin M. Ryan; Véronique Maguer-Satta; Brian J. Druker; Richard E. Clark; Subir Mitra; Pawel Herzyk; Franck E. Nicolini; Paolo Salomoni; G. Vignir Helgason
Abstract Background Imatinib and second-generation tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib have statistically significantly improved the life expectancy of chronic myeloid leukemia (CML) patients; however, resistance to TKIs remains a major clinical challenge. Although ponatinib, a third-generation TKI, improves outcomes for patients with BCR-ABL-dependent mechanisms of resistance, including the T315I mutation, a proportion of patients may have or develop BCR-ABL-independent resistance and fail ponatinib treatment. By modeling ponatinib resistance and testing samples from these CML patients, it is hoped that an alternative drug target can be identified and inhibited with a novel compound. Methods Two CML cell lines with acquired BCR-ABL-independent resistance were generated following culture in ponatinib. RNA sequencing and gene ontology (GO) enrichment were used to detect aberrant transcriptional response in ponatinib-resistant cells. A validated oncogene drug library was used to identify US Food and Drug Administration–approved drugs with activity against TKI-resistant cells. Validation was performed using bone marrow (BM)–derived cells from TKI-resistant patients (n = 4) and a human xenograft mouse model (n = 4–6 mice per group). All statistical tests were two-sided. Results We show that ponatinib-resistant CML cells can acquire BCR-ABL-independent resistance mediated through alternative activation of mTOR. Following transcriptomic analysis and drug screening, we highlight mTOR inhibition as an alternative therapeutic approach in TKI-resistant CML cells. Additionally, we show that catalytic mTOR inhibitors induce autophagy and demonstrate that genetic or pharmacological inhibition of autophagy sensitizes ponatinib-resistant CML cells to death induced by mTOR inhibition in vitro (% number of colonies of control[SD], NVP-BEZ235 vs NVP-BEZ235+HCQ: 45.0[17.9]% vs 24.0[8.4]%, P = .002) and in vivo (median survival of NVP-BEZ235- vs NVP-BEZ235+HCQ-treated mice: 38.5 days vs 47.0 days, P = .04). Conclusion Combined mTOR and autophagy inhibition may provide an attractive approach to target BCR-ABL-independent mechanism of resistance.
Blood | 2018
Francesca Pellicano; Laura Park; Lisa Hopcroft; Mansi Shah; Lorna Jackson; Mary T. Scott; Cassie J. Clarke; Amy Sinclair; Sheela A. Abraham; Alan Hair; G. Vignir Helgason; Mark Aspinall-O'Dea; Ravi Bhatia; Gustavo Leone; Kamil R. Kranc; Anthony D. Whetton; Tessa L. Holyoake
Chronic myeloid leukemia (CML) stem/progenitor cells (SPCs) express a transcriptional program characteristic of proliferation, yet can achieve and maintain quiescence. Understanding the mechanisms by which leukemic SPCs maintain quiescence will help to clarify how they persist during long-term targeted treatment. We have identified a novel BCR-ABL1 protein kinase-dependent pathway mediated by the upregulation of hsa-mir183, the downregulation of its direct target early growth response 1 (EGR1), and, as a consequence, upregulation of E2F1. We show here that inhibition of hsa-mir183 reduced proliferation and impaired colony formation of CML SPCs. Downstream of this, inhibition of E2F1 also reduced proliferation of CML SPCs, leading to p53-mediated apoptosis. In addition, we demonstrate that E2F1 plays a pivotal role in regulating CML SPC proliferation status. Thus, for the first time, we highlight the mechanism of hsa-mir183/EGR1-mediated E2F1 regulation and demonstrate this axis as a novel, critical factor for CML SPC survival, offering new insights into leukemic stem cell eradication.