Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa J. White is active.

Publication


Featured researches published by Lisa J. White.


Biomaterials | 2010

The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation

Janos M. Kanczler; Patrick J. Ginty; Lisa J. White; Nicholas Clarke; Steven M. Howdle; Kevin M. Shakesheff; Richard O.C. Oreffo

Regenerating bone tissue involves complex, temporal and coordinated signal cascades of which bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF(165)) play a prominent role. The aim of this study was to determine if the delivery of human bone marrow stromal cells (HBMSC) seeded onto VEGF(165)/BMP-2 releasing composite scaffolds could enhance the bone regenerative capability in a critical sized femur defect. Alginate-VEGF(165)/P(DL)LA-BMP-2 scaffolds were fabricated using a supercritical CO(2) mixing technique and an alginate entrapment protocol. Increased release of VEGF(165) (750.4+/-596.8 rho g/ml) compared to BMP-2 (136.9+/-123.4 r hog/ml) was observed after 7-days in culture. Thereafter, up till 28 days, an increased rate of release of BMP-2 compared to VEGF(165) was observed. The alginate-VEGF(165)/P(DL)LA-BMP-2+HBMSC group showed a significant increase in the quantity of regenerated bone compared to the alginate-VEGF(165)/P(DL)LA-BMP-2 and alginate/P(DL)LA groups respectively in a critical sized femur defect study as indices measured by microCT. Histological examination confirmed significant new endochondral bone matrix in the HBMSC seeded alginate-VEGF(165)/P(DL)LA-BMP-2 defect group in comparison to the other groups. These studies demonstrate the ability to deliver a combination of HBMSC with angiogenic and osteogenic factors released from biodegradable scaffold composites enhances the repair and regeneration of critical sized bone defects.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Dental pulp stem cells: function, isolation and applications in regenerative medicine

Marco Tatullo; Massimo Marrelli; Kevin M. Shakesheff; Lisa J. White

Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.


Acta Biomaterialia | 2013

Hydrogels derived from demineralized and decellularized bone extracellular matrix

M. J. Sawkins; W. Bowen; P. Dhadda; H. Markides; Laura E. Sidney; A.J. Taylor; Felicity R.A.J. Rose; Stephen F. Badylak; Kevin M. Shakesheff; Lisa J. White

Graphical abstract


Materials | 2014

Gelatin-Based Materials in Ocular Tissue Engineering

James B. Rose; Settimio Pacelli; Alicia J. El Haj; Harminder S. Dua; Andrew Hopkinson; Lisa J. White; Felicity R.A.J. Rose

Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.


Acta Biomaterialia | 2012

The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.

Lisa J. White; Victoria Hutter; Hongyun Tai; Steven M. Howdle; Kevin M. Shakesheff

The porous structure of a scaffold determines the ability of bone to regenerate within this environment. In situations where the scaffold is required to provide mechanical function, balance must be achieved between optimizing porosity and maximizing mechanical strength. Supercritical CO(2) foaming can produce open-cell, interconnected structures in a low-temperature, solvent-free process. In this work, we report on foams of varying structural and mechanical properties fabricated from different molecular weights of poly(DL-lactic acid) P(DL)LA (57, 25 and 15 kDa) and by varying the depressurization rate. Rapid depressurization rates produced scaffolds with homogeneous pore distributions and some closed pores. Decreasing the depressurization rate produced scaffolds with wider pore size distributions and larger, more interconnected pores. In compressive testing, scaffolds produced from 57 kDa P(DL)LA exhibited typical stress-strain curves for elastomeric open-cell foams whereas scaffolds fabricated from 25 and 15 kDa P(DL)LA behaved as brittle foams. The structural and mechanical properties of scaffolds produced from 57 kDa P(DL)LA by scCO(2) ensure that these scaffolds are suitable for potential applications in bone tissue engineering.


Acta Biomaterialia | 2017

Extracellular Matrix Hydrogels from Decellularized Tissues: Structure and Function.

Lindsey T. Saldin; Madeline C. Cramer; Sachin S. Velankar; Lisa J. White; Stephen F. Badylak

Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. STATEMENT OF SIGNIFICANCE More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel.


Acta Biomaterialia | 2010

Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester

Chiara Gualandi; Lisa J. White; Liu Chen; Richard A. Gross; Kevin M. Shakesheff; Steven M. Howdle; Mariastella Scandola

Porous scaffolds of a random co-polymer of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL) (poly(PDL-CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO(2)) foaming. The co-polymer, containing 31 mol.% CL units, is highly crystalline (T(m) = 82 degrees C, DeltaH(m) = 105 J g(-1)) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO(2) at T > T(m). The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42-76% and an average pore size of 100-375 microm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL-CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL-CL) foams may find application in the regeneration of cartilage tissue.


Acta Biomaterialia | 2014

Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model

Emma L. Smith; Janos M. Kanczler; David Gothard; C Roberts; J. A. Wells; Lisa J. White; Omar Qutachi; M. J. Sawkins; Heather Peto; Hassan Rashidi; Luis Rojo; Molly M. Stevens; A.J. El Haj; Felicity R.A.J. Rose; Kevin M. Shakesheff; Richard O.C. Oreffo

Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come to the fore, including the development of growth factor releasing technologies and appropriate animal models to evaluate repair. Ex vivo models represent a promising alternative to simple in vitro systems or complex, ethically challenging in vivo models. We have developed an ex vivo culture system of whole embryonic chick femora, adapted in this study as a critical size defect model to investigate the effects of novel bone extracellular matrix (bECM) hydrogel scaffolds containing spatio-temporal growth factor-releasing microparticles and skeletal stem cells on bone regeneration, to develop a viable alternative treatment for skeletal degeneration. Alginate/bECM hydrogels combined with poly (d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PDLLGA) microparticles releasing VEGF, TGF-β3 or BMP-2 were placed, with human adult Stro-1+ bone marrow stromal cells, into 2mm central segmental defects in embryonic chick femurs. Alginate/bECM hydrogels loaded with HSA/VEGF or HSA/TGF-β3 demonstrated a cartilage-like phenotype, with minimal collagen I deposition, comparable to HSA-only control hydrogels. The addition of BMP-2 releasing microparticles resulted in enhanced structured bone matrix formation, evidenced by increased Sirius red-stained matrix and collagen expression within hydrogels. This study demonstrates delivery of bioactive growth factors from a novel alginate/bECM hydrogel to augment skeletal tissue formation and the use of an organotypic chick femur defect culture system as a high-throughput test model for scaffold/cell/growth factor therapies for regenerative medicine.


PLOS ONE | 2016

Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I

Francesco Paduano; Massimo Marrelli; Lisa J. White; Kevin M. Shakesheff; Marco Tatullo

Objectives The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. Methods DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. Results When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. Significance These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.


Materials Science and Engineering: C | 2013

Accelerating protein release from microparticles for regenerative medicine applications

Lisa J. White; Giles T. S. Kirby; Helen Cox; Roozbeh Qodratnama; Omar Qutachi; Felicity R.A.J. Rose; Kevin M. Shakesheff

There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery.

Collaboration


Dive into the Lisa J. White's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Qutachi

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Shakesheff

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giles T. S. Kirby

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Cox

University of the West of England

View shared research outputs
Researchain Logo
Decentralizing Knowledge