Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa K. Mullany is active.

Publication


Featured researches published by Lisa K. Mullany.


Oncogene | 2011

Molecular and Functional Characteristics of Ovarian Surface Epithelial Cells Transformed by KrasG12D and loss of Pten in a Mouse Model in vivo

Lisa K. Mullany; Heng-Yu Fan; Zhilin Liu; Lisa D. White; Alexandra Marshall; Preethi H. Gunaratne; Matthew L. Anderson; Chad J. Creighton; Li Xin; Michael T. Deavers; Kwong Kwok Wong; JoAnne S. Richards

Ovarian cancer is a complex and deadly disease that remains difficult to detect at an early curable stage. Furthermore, although some oncogenic (Kras, Pten/PI3K and Trp53) pathways that are frequently mutated, deleted or amplified in ovarian cancer are known, how these pathways initiate and drive specific morphological phenotypes and tumor outcomes remain unclear. We recently generated Ptenfl/fl; KrasG12D; Amhr2-Cre mice to disrupt the Pten gene and express a stable mutant form of KrasG12D in ovarian surface epithelial (OSE) cells. On the basis of histopathologic criteria, the mutant mice developed low-grade ovarian serous papillary adenocarcinomas at an early age and with 100% penetrance. This highly reproducible phenotype provides the first mouse model in which to study this ovarian cancer subtype. OSE cells isolated from ovaries of mutant mice at 5 and 10 weeks of age exhibit temporal changes in the expression of specific Mullerian epithelial marker genes, grow in soft agar and develop ectopic invasive tumors in recipient mice, indicating that the cells are transformed. Gene profiling identified specific mRNAs and microRNAs differentially expressed in purified OSE cells derived from tumors of the mutant mice compared with wild-type OSE cells. Mapping of transcripts or genes between the mouse OSE mutant data sets, the Kras signature from human cancer cell lines and the human ovarian tumor array data sets, documented significant overlap, indicating that KRAS is a key driver of OSE transformation in this context. Two key hallmarks of the mutant OSE cells in these mice are the elevated expression of the tumor-suppressor Trp53 (p53) and its microRNA target, miR-34a-c. We propose that elevated TRP53 and miR-34a-c may exert negatively regulatory effects that reduce the proliferative potential of OSE cells leading to the low-grade serous adenocarcinoma phenotype.


Cell Cycle | 2008

Distinct proliferative and transcriptional effects of the D-type cyclins in vivo.

Lisa K. Mullany; Peter S. White; Eric A. Hanse; Christopher J. Nelsen; Melissa M. Goggin; Joseph E. Mullany; Chelsea K. Anttila; Linda E. Greenbaum; Klaus H. Kaestner; Jeffrey H. Albrecht

The D-type cyclins (D1, D2, and D3) are components of the cell cycle machinery and govern progression through G1 phase in response to extracellular signals. Although these proteins are highly homologous and conserved in evolution, they contain distinct structural motifs and are differentially regulated in various cell types. Cyclin D1 appears to play a role in many different types of cancer, whereas cyclins D2 and D3 are less frequently associated with malignancy. In this study, we transiently expressed cyclin D1, D2, or D3 in hepatocytes and analyzed transcriptional networks regulated by each. All three D-type cyclins promoted robust hepatocyte proliferation and marked liver growth, although cyclin D3 stimulated less DNA synthesis than D1 or D2. Accordingly, the three D-type cyclins similarly activated genes associated with cell division. Cyclin D1 regulated transcriptional pathways involved in the metabolism of carbohydrates, lipids, amino acids, and other substrates, whereas cyclin D2 did not regulate these pathways despite having an equivalent effect on proliferation. Comparison of transcriptional profiles following 70% partial hepatectomy and cyclin D1 transduction revealed a highly significant overlap, suggesting that cyclin D1 may regulate diverse cellular processes in the regenerating liver. In summary, these studies provide the first comparative analysis of the transcriptional networks regulated by the D-type cyclins and provide insight into novel functions of these key cell cycle proteins. Further study of the unique targets of cyclin D1 should provide further insight into its prominent role in proliferation, growth, and cancer.


Journal of Biological Chemistry | 2007

Akt-mediated Liver Growth Promotes Induction of Cyclin E through a Novel Translational Mechanism and a p21-mediated Cell Cycle Arrest

Lisa K. Mullany; Christopher J. Nelsen; Eric A. Hanse; Melissa M. Goggin; Chelsea K. Anttila; Mark Peterson; Peter B. Bitterman; Arvind Raghavan; Gretchen S. Crary; Jeffrey H. Albrecht

The control of hepatocyte growth is relevant to the processes of liver regeneration, development, metabolic homeostasis, and cancer. A key component of growth control is the protein kinase Akt, which acts downstream of mitogens and nutrients to affect protein translation and cell cycle progression. In this study, we found that transient transfection of activated Akt triggered a 3-4-fold increase in liver size within days but only minimal hepatocyte proliferation. Akt-induced liver growth was associated with marked up-regulation of cyclin E but not cyclin D1. Analysis of liver polyribosomes demonstrated that the post-transcriptional induction of cyclin E was associated with increased translational efficiency of this mRNA, suggesting that cell growth promotes expression of this protein through a translational mechanism that is distinct from the cyclin D-E2F pathway. Treatment of Akt-transfected mice with rapamycin only partially inhibited liver growth and did not prevent the induction of cyclin E protein, indicating that target of rapamycin activity is not necessary for this response. In the enlarged livers, cyclin E-Cdk2 complexes were present in high abundance but were inactive due to increased binding of p21 to these complexes. Akt transfection of p21-/- mice promoted liver growth, activation of Cdk2, and enhanced hepatocyte proliferation. In conclusion, growth promotes cyclin E expression through a novel translational mechanism in the liver, suggesting a new link between cell growth and the cell cycle machinery. Furthermore, p21 suppresses proliferation in the overgrown livers and may play a role in preventing cell cycle progression in response to organ size homeostatic mechanisms.


Cell Cycle | 2012

Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α

Eric A. Hanse; Douglas G. Mashek; Jennifer R. Becker; Ashley D. Solmonson; Lisa K. Mullany; Mara T. Mashek; Howard C. Towle; Anhtung T. Chau; Jeffrey H. Albrecht

Following acute hepatic injury, the metabolic capacity of the liver is altered during the process of compensatory hepatocyte proliferation by undefined mechanisms. In this study, we examined the regulation of de novo lipogenesis by cyclin D1, a key mediator of hepatocyte cell cycle progression. In primary hepatocytes, cyclin D1 significantly impaired lipogenesis in response to glucose stimulation. Cyclin D1 inhibited the glucose-mediated induction of key lipogenic genes, and similar effects were seen using a mutant (D1-KE) that does not activate cdk4 or induce cell cycle progression. Cyclin D1 (but not D1-KE) inhibited the activity of the carbohydrate response element-binding protein (ChREBP) by regulating the glucose-sensing motif of this transcription factor. Because changes in ChREBP activity could not fully explain the effect of cyclin D1, we examined hepatocyte nuclear factor 4α (HNF4α), which regulates numerous differentiated functions in the liver including lipid metabolism. We found that both cyclins D1 and D1-KE bound to HNF4α and significantly inhibited its recruitment to the promoter region of lipogenic genes in hepatocytes. Conversely, knockdown of cyclin D1 in the AML12 hepatocyte cell line promoted HNF4α activity and lipogenesis. In mouse liver, HNF4α bound to a central domain of cyclin D1 involved in transcriptional repression. Cyclin D1 inhibited lipogenic gene expression in the liver following carbohydrate feeding. Similar findings were observed in the setting of physiologic cyclin D1 expression in the regenerating liver. In conclusion, these studies demonstrate that cyclin D1 represses ChREBP and HNF4α function in hepatocytes via Cdk4-dependent and -independent mechanisms. These findings provide a direct link between the cell cycle machinery and the transcriptional control of metabolic function of the liver.


Endocrinology | 2012

Minireview: animal models and mechanisms of ovarian cancer development.

Lisa K. Mullany; JoAnne S. Richards

Ovarian cancer in women is a complex and deadly disease, where the molecular events that initiate and control tumor formation remain poorly defined. Therefore, mouse models provide one approach for determining the mechanisms by which specific oncogenic factors cause ovarian surface epithelial cell and granulosa cell transformation. This minireview summarizes the phenotypes of current mouse models that have been generated and some of the underlying mechanisms they have provided.


Molecular and Cellular Endocrinology | 2012

Consequences of RAS and MAPK activation in the ovary: the good, the bad and the ugly

Heng-Yu Fan; Zhilin Liu; Lisa K. Mullany; JoAnne S. Richards

This review summarizes studies providing evidence (1) that endogenous RAS activation regulates important physiological events during ovulation and luteinization (2) that expression of the mutant, active KRAS(G12D) in granulosa cells in vivo causes abnormal follicle growth arrest leading to premature ovarian failure and (3) that KRAS(G12D) expression in ovarian surface epithelial (OSE) cells renders them susceptible to the pathological outcome of transformation and tumor formation. These diverse effects of RAS highlight how critical its activation is linked to cell- and stage-specific events in the ovary that control normal processes and that can also lead to altered granulosa cell and OSE cell fates.


Endocrinology | 2012

EGF-Like Factors Induce Expansion of the Cumulus Cell-Oocyte Complexes by Activating Calpain-Mediated Cell Movement

Ikko Kawashima; Zhilin Liu; Lisa K. Mullany; Toshihiro Mihara; JoAnne S. Richards; Masayuki Shimada

Cumulus cell-oocyte complex (COC) expansion is obligatory for LH-induced ovulation and is initiated by LH induction of the epidermal growth factor (EGF)-like factors that mediate the synthesis of the hyaluronan-rich matrix and hyaluronan-stabilizing factors. COC expansion also involves the movement of cumulus cells within the matrix by mechanisms that have not been characterized. We document herein that two proteases, calpain 2 and to a lesser extent calpain 1, are expressed in cumulus cells and that the proteolytic activity of these enzymes is rapidly and significantly increased in COC isolated from human chorionic gonadotropin-induced ovulatory follicles in vivo. Stimulation of calpain activity was associated with proteolytic degradation of paxillin and talin (two components of focal adhesion complexes), cell detachment, and the formation of cell surface bleb-like protrusions. Injection of a calpain inhibitor in vivo reduced 1) human chorionic gonadotropin-stimulated calpain enzyme activity, 2) cell detachment, 3) membrane protrusion formation, and 4) COC expansion by mechanisms that did not alter Has2 expression. During EGF-like factor induction of COC expansion in culture, calpain activity was increased by ERK1/2 and intracellular Ca(2+) signaling pathways. Inhibition of calpain activity in cultured COC blocked cumulus cell detachment, protrusion formation, and the vigorous movement of cumulus cells. As a consequence, COC expansion was impaired. Collectively, these results show that two highly coordinated processes control COC expansion. One process involves the synthesis of the hyaluronan matrix, and the other mediates cumulus cell detachment and movement. The latter are controlled by calpain activation downstream of the EGF receptor activation of the Ca(2+) pathway and ERK1/2 pathways.


Cell Cycle | 2009

Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo.

Eric A. Hanse; Christopher J. Nelsen; Melissa M. Goggin; Chelsea K. Anttila; Lisa K. Mullany; Cyril Berthet; Philipp Kaldis; Gretchen S. Crary; Ryoko Kuriyama; Jeffrey H. Albrecht

Cdk2 was once believed to play an essential role in cell cycle progression, but cdk2-/- mice have minimal phenotypic abnormalities. In this study, we examined the role of cdk2 in hepatocyte proliferation, centrosome duplication, and survival. Cdk2-/- hepatocytes underwent mitosis and had normal centrosome content after mitogen stimulation. Unlike wild-type cells, cdk2-/- liver cells failed to undergo centrosome overduplication in response to ectopic cyclin D1 expression. After mitogen stimulation in culture or partial hepatectomy in vivo, cdk2-/- hepatocytes demonstrated diminished proliferation. Cyclin D1 is a key mediator of cell cycle progression in hepatocytes, and transient expression of this protein is sufficient to promote robust proliferation of these cells in vivo. In cdk2-/- mice and animals treated with the cdk2 inhibitor seliciclib, cyclin D1 failed to induce hepatocyte cell cycle progression. Surprisingly, cdk2 ablation or inhibition led to massive hepatocyte and animal death following cyclin D1 transfection. In a transgenic model of chronic hepatic cyclin D1 expression, seliciclib induced hepatocyte injury and animal death, suggesting that cdk2 is required for survival of cyclin D1-expressing cells even in the absence of substantial proliferation. In conclusion, our studies demonstrate that cdk2 plays a role in liver regeneration. Furthermore, it is essential for centrosome overduplication, proliferation, and survival of hepatocytes that aberrantly express cyclin D1 in vivo. These studies suggest that cdk2 may warrant further investigation as a target for therapy of liver tumors with constitutive cyclin D1 expression.


Endocrinology | 2012

Wild-type tumor repressor protein 53 (Trp53) promotes ovarian cancer cell survival.

Lisa K. Mullany; Zhilin Liu; Erin R. King; Kwong Kwok Wong; Jo Anne S. Richards

Loss of Pten in the Kras(G12D);Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated levels of wild-type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53-) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53- OSE cells from these mice, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory, and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild-type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression, and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (a mouse double minute-2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low-grade ovarian cancer cells, wild-type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing low-grade ovarian cancer and other cancers in humans in which wild-type TP53 is expressed.


Neoplasia | 2015

Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival

Lisa K. Mullany; Kwong Kwok Wong; David C. Marciano; Panagiotis Katsonis; Erin R. King-Crane; Yi Athena Ren; Olivier Lichtarge; Jo Anne S. Richards

Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC). As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17); copy number variation (R175H; chromosome 9); and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31%) of HGSCs exhibit loss of heterozygosity, a significant number (24%) maintain a wild-type (WT) allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing “proof of principle” that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles) are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.

Collaboration


Dive into the Lisa K. Mullany's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhilin Liu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey H. Albrecht

Hennepin County Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kwong Kwok Wong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric A. Hanse

Hennepin County Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Nelsen

Hennepin County Medical Center

View shared research outputs
Top Co-Authors

Avatar

David M. Gershenson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge