Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa M. Croll.
Journal of Colloid and Interface Science | 2010
J.W.H. Smith; Philippe Westreich; A. J. Smith; H. Fortier; Lisa M. Croll; J.H. Reynolds; J. R. Dahn
Copper oxide impregnated activated carbon was prepared by three methods and studied as a respirator carbon. Using techniques such as dynamic flow testing, X-ray diffraction (XRD), thermal analysis, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), copper oxide impregnants, derived from different sources such as basic copper carbonate (Cu(2)CO(3)(OH)(2)), copper nitrate (Cu(NO(3))(2)) and copper chloride (CuCl(2)) reacted with sodium hydroxide (NaOH), have been studied. Dynamic flow tests performed using sulfur dioxide (SO(2)), ammonia (NH(3)) and hydrogen cyanide (HCN) challenge gases allow the determination of the stoichiometric ratio of reaction (SRR) between challenge gas and impregnant. Thermal gravimetric analysis experiments showed that an inert heating environment was required when thermally decomposing the Cu(NO(3))(2) impregnant to CuO to avoid damaging the activated carbon substrate. SEM has been used to investigate dispersal and particle size of the impregnant on the activated carbon. XRD permits the identification of crystalline and amorphous phases as well as the grain size of the impregnant. XRD analysis of samples before and after exposure to SO(2) has allowed the active impregnant in SO(2) adsorption to be identified. The relationship between SRR, impregnant loading and grain size is discussed. Methods to improve impregnant distribution are presented and their impact discussed.
Journal of Colloid and Interface Science | 2009
J.W.H. Smith; Philippe Westreich; Lisa M. Croll; J.H. Reynolds; J. R. Dahn
Basic copper carbonate (Cu(2)CO(3)(OH)(2)) is often used as an impregnant in activated carbons for respiratory filters. The mechanisms that allow adsorption of toxic gases by an activated carbon loaded with a Cu(2)CO(3)(OH)(2)-based impregnation recipe are studied here. Several samples were studied to determine the effect of ingredients added during impregnation, impregnant loading and drying temperature on performance. The filtering capacity of the samples is quantified by the stoichiometric ratio of reaction (SRR) between the impregnant and the challenge gas. X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant both on and off the carbon as a function of loading and heat-treatment temperature. The influence of the phase and dispersion of the impregnant on the SRR is the focus of this report.
Journal of Hazardous Materials | 2010
J.W.H. Smith; Philippe Westreich; H. Abdellatif; P. Filbee-Dexter; A. J. Smith; T.E.Wood; Lisa M. Croll; J.H. Reynolds; J. R. Dahn
The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO(3))(2)/0.04 M H(3)PO(4).12MoO(3)/4M HNO(3) solution that were heated to 200 degrees C under argon were found to have the best overall performance of the samples studied in this work.
ACS Combinatorial Science | 2012
Jennifer V. Romero; J.W.H. Smith; Braden M. Sullivan; Lisa M. Croll; J. R. Dahn
Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided.
Journal of Colloid and Interface Science | 2011
J.W.H. Smith; Jennifer V. Romero; Tara Dahn; K. Dunphy; Braden M. Sullivan; M. Mallay; Lisa M. Croll; J.H. Reynolds; C. Andress; J. R. Dahn
Impregnated activated carbons (IACs) that are used in broad spectrum gas mask applications have historically contained copper and/or zinc impregnants. The addition of an oxidizing agent, such as nitric acid (HNO(3)) can be useful in distributing the metallic impregnants uniformly on the activated carbon substrate. In this work, we study IACs prepared from copper nitrate (Cu(NO(3))(2)) and zinc nitrate (Zn(NO(3))(2)) precursors as a function of HNO(3) content present in the impregnating solution and as a function of heating temperature. The gas adsorption capacity of the IACs was determined by dynamic flow testing using sulfur dioxide (SO(2)), ammonia (NH(3)), hydrogen cyanide (HCN) and cyclohexane (C(6)H(12)) challenge gases under dry and humid conditions. The thermal decomposition and distribution of the impregnant on the activated carbon substrate is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal analysis techniques. Relationships between gas adsorption capacity, impregnant distribution and the species of surface impregnants are discussed.
ACS Combinatorial Science | 2011
Jennifer V. Romero; J.W.H. Smith; Braden M. Sullivan; Matthew G. Mallay; Lisa M. Croll; Judy A. Reynolds; Carrie Andress; Monika Simon; J. R. Dahn
A ternary library of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples was synthesized and screened automatically using a combinatorial (combi) method. The ability of the samples to adsorb toxic gases was screened gravimetrically. The stoichiometric ratio of reaction (SRR) between the moles of toxicant and the total moles of impregnant was obtained from the calculated mass increase of the samples after chemisorption, with a high SRR indicating high efficiency of toxicant removal. The combi samples that exhibited good dry SO(2) and NH(3) adsorption were prepared in bulk using the incipient wetness method and were evaluated for multigas respirator function by dynamic adsorption studies of SO(2), NH(3), HCN, and C(6)H(12) gases in either dry or humid conditions at ambient temperature. The bulk samples showed equivalent gas adsorption capacities when exposed to the different challenge gases indicating the value of the combi method for initial screening. Cu(2)Cl(OH)(3) was identified to be a potential multigas adsorbent.
ACS Combinatorial Science | 2013
Jennifer V. Romero; J.W.H. Smith; Braden M. Sullivan; Landan Macdonald; Lisa M. Croll; J. R. Dahn
Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO.
Journal of Hazardous Materials | 2012
J.W.H. Smith; Jennifer V. Romero; Tara Dahn; K. Dunphy; Lisa M. Croll; J. R. Dahn
Impregnated activated carbons (IACs) that are used in multi-gas respirator applications usually contain copper and/or zinc impregnants. Co-impregnating with properly selected acids can improve the distribution of the metallic impregnant on the carbon and improve the gas adsorption capacity of the IAC. In this work a comparative study of some common acids co-impregnated with a zinc nitrate (Zn(NO(3))(2)) precursor is performed. The IACs were heated in an inert atmosphere at temperatures which promoted the thermal decomposition of Zn(NO(3))(2) to zinc oxide (ZnO). The gas adsorption properties of the IACs were tested using ammonia (NH(3)), sulphur dioxide (SO(2)) and hydrogen cyanide (HCN) challenge gases. Powder X-ray diffraction (XRD) was used to identify the impregnant species present after heating and to study impregnant distribution. Gravimetric analysis was used to determine the impregnant loading, and help to identify the impregnant species after heating. The interactions between the co-impregnated acid and Zn(NO(3))(2) precursor during heating are discussed. The relationship between impregnant species and gas adsorption capacity is discussed.
Journal of Hazardous Materials | 2010
Jennifer V. Romero; J.W.H. Smith; C.L. White; S. Trussler; Lisa M. Croll; J. R. Dahn
A combinatorial materials science approach for the discovery of an impregnated activated carbon that can adsorb a wide variety of toxic gases (i.e. a multi-gas carbon) has been developed. This approach presently allows for the parallel preparation and investigation of 64-100 IAC samples at once increasing the rate of discovery of viable multi-gas carbons. Multi-gas carbons were prepared using a solutions handling robot and screened gravimetrically for their effectiveness as gas adsorbents. The method was validated using known gas adsorbent materials such as ZnCl(2), K(2)CO(3) and CuO-impregnated carbons. The calculated adsorption capacities and stoichiometric ratios of reactions for these known gas adsorbent materials, when evaluated using the combinatorial approach, was comparable to the values obtained using traditional methods of analysis. A library of samples prepared by combining various amounts of CuO and ZnO impregnants showed the expected decreasing trend in the calculated stoichiometric ratio of reaction with respect to increasing amount of impregnants added. The method is now ready to use to explore new systems of impregnated activated carbons.
Journal of Colloid and Interface Science | 2016
Xiaowei Ma; Nicholas Campbell; L. Madec; Matthew A. Rankin; Lisa M. Croll; J. R. Dahn
In this work, nanoporous manganese oxides (MnOx) were prepared by thermal decomposition of MnC2O4·2H2O at 225°C for 6h in air. The manganese oxalate dihydrate precipitate was made from manganese sulfate and ammonium oxalate during ultrasonication and stirring. The physical properties of the oxalate precursors and the resulting MnOx samples were characterized with SEM, TGA-DSC, FTIR and powder XRD. The specific surface areas and porosity of MnOx were studied by single-point BET and multi-point N2 adsorption-desorption measurements. The amorphous MnOx from oxalate prepared by sonication showed a specific surface area as large as 499.7m(2)/g. Dynamic SO2 and NH3 flow tests indicated that the adsorption capacity of MnOx, especially for SO2, can be increased by increased surface area. Compared to the best Mn3O4-impregnated activated carbon adsorbent, nanoporous MnOx could remove approximately three times as much SO2 and a comparable amount of NH3 per gram of adsorbent. This could lead to respirators of lower weight and smaller size which will be attractive to users.