Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa M. Hoffman is active.

Publication


Featured researches published by Lisa M. Hoffman.


Journal of Cell Biology | 2006

BMP action in skeletogenesis involves attenuation of retinoid signaling

Lisa M. Hoffman; Kamal Garcha; Konstantina Karamboulas; Matthew F. Cowan; Linsay M. Drysdale; William A. Horton; T. Michael Underhill

The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the gene for the retinoic acid (RA) synthesis enzyme Aldh1a2 as a principal target of BMP signaling; prochondrogenic BMPs or GDFs lead to attenuation of Aldh1a2 expression and, consequently, to reduced activation of the retinoid signaling pathway. Consistent with this, antagonism of retinoid signaling phenocopies BMP4 action, whereas RA inhibits the chondrogenic stimulatory activity of BMP4. BMP4 also down-regulates Aldh1a2 expression in organ culture and, consistent with this, Aldh1a2 is actively excluded from the developing cartilage anlagens. Collectively, these findings provide novel insights into BMP action and demonstrate that BMP signaling governs the fate of prechondrogenic mesenchyme, at least in part, through regulation of retinoid signaling.


BMC Musculoskeletal Disorders | 2011

Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

Nabeel Ahmad; Ian Welch; Robert W. Grange; Jennifer Hadway; Savita Dhanvantari; David J. Hill; Ting-Yim Lee; Lisa M. Hoffman

BackgroundDuchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.MethodsWild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of 18 F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).ResultsIn hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both 18F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.ConclusionsThe present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.


Physics in Medicine and Biology | 2013

Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy

K.S. St. Lawrence; Kyle Verdecchia; Jonathan T. Elliott; Kenneth M. Tichauer; Mamadou Diop; Lisa M. Hoffman; T-Y Lee

Dynamic contrast-enhanced (DCE) methods are widely used with magnetic resonance imaging and computed tomography to assess the vascular characteristics of tumours since these properties can affect the response to radiotherapy and chemotherapy. In contrast, there have been far fewer studies using optical-based applications despite the advantages of low cost and safety. This study investigated an appropriate kinetic model for optical applications to characterize tumour haemodynamics (blood flow, F, blood volume, V(b), and vascular heterogeneity) and vascular leakage (permeability surface-area product, PS). DCE data were acquired with two dyes, indocyanine green (ICG) and 800 CW carboxylate (IRD(cbx)), from a human colon tumour xenograph model in rats. Due to the smaller molecular weight of IRD(cbx) (1166 Da) compared to albumin-bound ICG (67 kDa), PS of IRD(cbx) was significantly larger; however, no significant differences in F and V(b) were found between the dyes as expected. Error analysis demonstrated that all parameters could be estimated with an uncertainty less than 5% due to the high temporal resolution and signal-to-noise ratio of the optical measurements. The next step is to adapt this approach to optical imaging to generate haemodynamics and permeability maps, which should enhance the clinical interest in optics for treatment monitoring.


Peptides | 2014

Characterization of a far-red analog of ghrelin for imaging GHS-R in P19-derived cardiomyocytes.

Gregory A.F. Douglas; Rebecca McGirr; Carlie L. Charlton; Dov B Kagan; Lisa M. Hoffman; Leonard G. Luyt; Savita Dhanvantari

Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr(3)(octanoyl), Lys(19)(Cy5)]ghrelin (1-19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys(19)(Cy5)]ghrelin (1-19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.


Academic Radiology | 2014

Improving Quantitative CT Perfusion Parameter Measurements Using Principal Component Analysis

Timothy Pok Chi Yeung; Mark Dekaban; Nathan De Haan; Laura Morrison; Lisa M. Hoffman; Yves Bureau; Xiaogang Chen; Slav Yartsev; Glenn Bauman; Ting-Yim Lee

RATIONALE AND OBJECTIVES To evaluate the improvements in measurements of blood flow (BF), blood volume (BV), and permeability-surface area product (PS) after principal component analysis (PCA) filtering of computed tomography (CT) perfusion images. To evaluate the improvement in CT perfusion image quality with poor contrast-to-noise ratio (CNR) in vivo. MATERIALS AND METHODS A digital phantom with CT perfusion images reflecting known values of BF, BV, and PS was created and was filtered using PCA. Intraclass correlation coefficients and Bland-Altman analysis were used to assess reliability of measurements and reduction in measurement errors, respectively. Rats with C6 gliomas were imaged using CT perfusion, and the raw CT perfusion images were filtered using PCA. Differences in CNR, BF, BV, and PS before and after PCA filtering were assessed using repeated measures analysis of variance. RESULTS From simulation, mean errors decreased from 12.8 (95% confidence interval [CI] = -19.5 to 45.0) to 1.4 mL/min/100 g (CI = -27.6 to 30.4), 0.2 (CI = -1.1 to 1.4) to -0.1 mL/100 g (CI = -1.1 to 0.8), and 2.9 (CI = -2.4 to 8.1) to 0.2 mL/min/100 g (CI = -3.5 to 3.9) for BF, BV, and PS, respectively. Map noise in BF, BV, and PS were decreased from 51.0 (CI = -3.5 to 105.5) to 11.6 mL/min/100 g (CI = -7.9 to 31.2), 2.0 (CI = 0.7 to 3.3) to 0.5 mL/100 g (CI = 0.1 to 1.0), and 8.3 (CI = -0.8 to 17.5) to 1.4 mL/min/100 g (CI = -0.4 to 3.1), respectively. For experiments, CNR significantly improved with PCA filtering in normal brain (P < .05) and tumor (P < .05). Tumor and brain BFs were significantly different from each other after PCA filtering with four principal components (P < .05). CONCLUSIONS PCA improved image CNR in vivo and reduced the measurement errors of BF, BV, and PS from simulation. A minimum of four principal components is recommended.


Journal of Ultrasound in Medicine | 2009

High-frequency ultrasound to grade disease progression in murine models of Duchenne muscular dystrophy.

Nabeel Ahmad; Mike Bygrave; Rethy K. Chhem; Lisa M. Hoffman; Ian Welch; Robert W. Grange; Aaron Fenster; David J. Hill; Ting-Yim Lee

Objective. This study used high‐frequency ultrasound (HFU) imaging to assess muscle damage noninvasively in a longitudinal study of 2 transgenic murine models of Duchenne muscular dystrophy (DMD): mdx, which has mutated cytoskeletal protein dystrophin; and udx, which has mutated dystrophin and lacks another cytoskeleton protein, utrophin. The mdx group was further subdivided into exercised and nonexercised subgroups to assess exercise‐induced damage. Methods. Muscle damage was assessed with HFU imaging (40 MHz) at biweekly intervals for 16 weeks. The assessment was based on the number of hyperechoic lesions, the lesion diameter, and muscle disorganization, giving a combined grade according to a 5‐point scale. Results. High‐frequency ultrasound discriminated the severity of muscle damage between wild‐type and transgenic models of DMD and between mdx and udx models. Qualitative comparisons of 3‐dimensional HFU images with serial histologic sections of the skeletal muscle showed the ability of ultrasound to accurately depict changes seen in the muscle architecture in vivo. Conclusions. High‐frequency ultrasound images soft tissue in mice at high contrast and spatial resolution, thereby showing that this microimaging modality has the capability to assess architectural changes in muscle fibers due to myotonic dystrophy–related diseases such as DMD.


PLOS ONE | 2014

CT Perfusion Imaging as an Early Biomarker of Differential Response to Stereotactic Radiosurgery in C6 Rat Gliomas

Timothy Pok Chi Yeung; Maher Kurdi; Yong Wang; Baraa K. Al-Khazraji; Laura Morrison; Lisa M. Hoffman; Dwayne N. Jackson; Cathie Crukley; Ting-Yim Lee; Glenn Bauman; Slav Yartsev

Background The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT) perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model. Methods Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8) or stereotactic radiosurgery (N = 25, 12 Gy in one fraction) delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline. Results Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank P<0.04). Responders to stereotactic radiosurgery showed lower relative blood volume (rBV), and permeability-surface area (PS) product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (P<0.05). rBV and PS on day 7 showed correlations with overall survival (P<0.05), and were predictive of survival with 92% accuracy. Conclusions Response to stereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation.


Ultrasound in Medicine and Biology | 2014

Application of 3-d echocardiography and gated micro-computed tomography to assess cardiomyopathy in a mouse model of duchenne muscular dystrophy.

Andrew B. Bondoc; Sarah Detombe; Joy Dunmore-Buyze; Kelly M. Gutpell; Linshan Liu; Amanda Kaszuba; Seongryoung Han; Rebecca McGirr; Jennifer Hadway; Maria Drangova; Lisa M. Hoffman

The purpose of this study was to measure changes in cardiac function as cardiomyopathy progresses in a mouse model of Duchenne muscular dystrophy using 3-D ECG-gated echocardiography. This study is the first to correlate cardiac volumes acquired using 3-D echocardiography with those acquired using retrospectively gated micro-computed tomography (CT). Both were further compared with standard M-mode echocardiography and histologic analyses. We found that although each modality measures a decrease in cardiac function as disease progresses in mdx/utrn(-/-) mice (n = 5) compared with healthy C57BL/6 mice (n = 8), 3-D echocardiography has higher agreement with gold-standard measurements acquired by gated micro-CT, with little standard deviation between measurements. M-Mode echocardiography measurements, in comparison, exhibit considerably greater variability and user bias. Given the radiation dose associated with micro-CT and the geometric assumptions made in M-mode echocardiography to calculate ventricular volume, we suggest that use of 3-D echocardiography has important advantages that may allow for the measurement of early disease changes that occur before overt cardiomyopathy.


Journal of Visualized Experiments | 2013

Molecular imaging to target transplanted muscle progenitor cells.

Kelly M. Gutpell; Rebecca McGirr; Lisa M. Hoffman

Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living subject; given the tomographic nature, fine spatial resolution and ability to scale up to larger animals and humans, PET will form the basis of future work that we suggest may facilitate rapid translation of methods developed in cells to preclinical models and to clinical applications.


PLOS ONE | 2017

ANG1 treatment reduces muscle pathology and prevents a decline in perfusion in DMD mice

Kelly M. Gutpell; Nikola Tasevski; Boaz Wong; William Thomas Hrinivich; Feng Su; Lise Desjardins; Ting-Yim Lee; Lisa M. Hoffman

Vascular endothelial growth factor (VEGF) and other pro-angiogenic growth factors have been investigated to enhance muscle tissue perfusion and repair in Duchenne muscular dystrophy (DMD). Current understanding is limited by a lack of functional data following in vivo delivery of these growth factors. We previously used dynamic contrast-enhanced computed tomography to monitor disease progression in murine models of DMD, but no study to date has utilized this imaging technique to assess vascular therapy in a preclinical model of DMD. In the current study, we locally delivered VEGF and ANG1 alone or in combination to dystrophic hind limb skeletal muscle. Using functional imaging, we found the combination treatment as well as ANG1 alone prevented decline in muscle perfusion whereas VEGF alone had no effect compared to controls. These findings were validated histologically as demonstrated by increased alpha-smooth muscle actin-positive vessels in muscles that received either VEGF+ANG1 or ANG1 alone compared to the sham group. We further show that ANG1 alone slows progression of fibrosis compared to either sham or VEGF treatment. The findings from this study shed new light on the functional effects of vascular therapy and suggest that ANG1 alone may be a candidate therapy in the treatment of DMD.

Collaboration


Dive into the Lisa M. Hoffman's collaboration.

Top Co-Authors

Avatar

Ting-Yim Lee

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Kelly M. Gutpell

Lawson Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

Glenn Bauman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Laura Morrison

Lawson Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rebecca McGirr

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Slav Yartsev

London Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

T. Michael Underhill

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Timothy Pok Chi Yeung

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Cathie Crukley

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

David J. Hill

Lawson Health Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge