Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa M. Kamendulis is active.

Publication


Featured researches published by Lisa M. Kamendulis.


Toxicologic Pathology | 2010

Oxidative stress and oxidative damage in carcinogenesis.

James E. Klaunig; Lisa M. Kamendulis; Barbara A. Hocevar

Carcinogenesis is a multistep process involving mutation and the subsequent selective clonal expansion of the mutated cell. Chemical and physical agents including those that induce reative oxygen species can induce and/or modulate this multistep process. Several modes of action by which carcinogens induce cancer have been identified, including through production of reactive oxygen species (ROS). Oxidative damage to cellular macromolecules can arise through overproduction of ROS and faulty antioxidant and/or DNA repair mechanisms. In addition, ROS can stimulate signal transduction pathways and lead to activation of key transcription factors such as Nrf2 and NF-κB. The resultant altered gene expression patterns evoked by ROS contribute to the carcinogenesis process. Recent evidence demonstrates an association between a number of single nucleotide polymorphisms (SNPs) in oxidative DNA repair genes and antioxidant genes with human cancer susceptibility. These aspects of ROS biology will be discussed in the context of their relationship to carcinogenesis.


Reproductive Toxicology | 2012

Mode of Action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and Human Relevance

James E. Klaunig; Barbara A. Hocevar; Lisa M. Kamendulis

Perfluorooctanoic acid (PFOA) is an environmentally persistent chemical used in the manufacturing of a wide array of industrial and commercial products. PFOA has been shown to induce tumors of the liver, testis and pancreas (tumor triad) in rats following chronic dietary administration. PFOA belongs to a group of compounds that are known to activate the PPARα receptor. The PPARα activation Mode of Action was initially addressed in 2003 [9] and further refined in subsequent reviews [92-94]. In the intervening time, additional information on PFOA effects as well as a further refinement of the Mode of Action framework warrants a re-examination of this compound for its cancer induction Mode of Action. This review will address the rodent (rat) cancer data and cancer Mode of Action of PFOA for tumors of the liver, testes and pancreas.


Advances in Experimental Medicine and Biology | 2005

Mechanisms of Acrylamide Induced Rodent Carcinogenesis

James E. Klaunig; Lisa M. Kamendulis

Acrylamide is a monomer of polyacrylamide, used in biochemistry, in paper manufacture, in water treatment, and as a soil stabilizer. The monomer can cause several toxic effects and has the potential for human exposure either through the environment or from occupational exposure. Recently, additional concern for the potential toxicity of acrylamide in humans has arisen with the finding of acrylamide formation in some processed foods. It has been established that following chronic exposure, rats exhibited an increase in the incidence of adrenal pheochromocytomas, testicular mesotheliomas, thyroid adenomas and mammary neoplasms in F344 rats. This has raised increased concerns regarding the carcinogenic risk to humans from acrylamide exposure. Studies examining the DNA reactivity of acrylamide have been performed and have had differing results. The tissue and organ pattern of neoplastic development seen in the rat following acrylamide exposure is not consistent with that seen with other strictly DNA reactive carcinogens. Based on the pattern of neoplastic development, it appears that acrylamide is targeting endocrine sensitive tissues. In the current monograph, studies on the effect of acrylamide on DNA reactivity and on altered cell growth in the target tissues in the rat are reported. DNA synthesis was examined in F344 rats treated with acrylamide (0, 2, or 15 mg/kg/day) for 7, 14, or 28 days. Acrylamide increased DNA synthesis in the target tissues (thyroid, testicular mesothelium, adrenal medulla) at all doses and time points examined. In contrast, in a non-target tissue (liver), no increase in DNA synthesis was seen. Examination of DNA damage using single cell gel electrophoresis (the Comet assay) showed an increase in DNA damage in the target tissues, but not in non-target tissue (liver). In addition, a cellular transformation model, (the Syrian Hamster Embryo (SHE) cell morphological transformation model), was used to examine potential mechanisms for the observed carcinogenicity of acrylamide. SHE cell studies showed that glutathione (GSH) modulation by acrylamide was important in the cell transformation process. Treatment with a sulfhydryl donor compound (NAC) reduced acrylamide transformation while depletion of GSH (BSO) resulted in an enhancement of transformation. In summary, acrylamide caused both an increase in DNA synthesis and DNA damage in mammalian tissues and cells suggesting that DNA reactivity and cell proliferation, in concert, may contribute to the observed acrylamide-induced carcinogenicity in the rat and has implication on the possible risk for human neoplasm development.


Journal of Toxicology and Environmental Health | 2002

COMPARATIVE EFFECTS OF PHTHALATE MONOESTERS ON GAP JUNCTIONAL INTERCELLULAR COMMUNICATION AND PEROXISOME PROLIFERATION IN RODENT AND PRIMATE HEPATOCYTES

Lisa M. Kamendulis; Jason S. Isenberg; Jacqueline H. Smith; George Pugh; Arthur W. Lington; James E. Klaunig

Several phthalate esters, compounds used as plasticizers in a variety of commercial products, have been shown to induce hepatic tumors in rodents. In this study, the comparative effects of phthalate monoesters on inhibition of gap junctional intercellular communication and induction of peroxisomal g -oxidation were assessed in primary cultured hepatocytes from rats, mice, hamsters, cynomolgus monkeys, and humans. A human liver cell line was also utilized. Eight monoesters examined included mono-2-ethylhexyl phthalate (MEHP), mono- n -octyl phthalate (MNOP), mono-isononyl phthalate (MINP, 3 types, -1, -2, and -3), mono-isoheptyl phthalate (MIHP), mono-isodecyl phthalate (MIDP), and mono-(heptyl, nonyl, undecyl) phthalate (M711P). Gap junctional intercellular communication was measured 4 and 24 h after treatment by lucifer yellow dye coupling. Gap junctional intercellular communication was inhibited in rat and mouse hepatocytes by all eight monoesters in a concentration-dependent manner. In most cases, gap junctional intercellular communication was significantly reduced at the lowest concentrations tested (50 µM). Inhibition of gap junctional intercellular communication in rodent cells was substantially reversed within 24 h of monoester removal. In contrast, cell-to-cell communication was not inhibited in hamster, cynomolgus, or human hepatocytes or in a human liver cell line at any concentration examined. In rat hepatocytes, peroxisomal g -oxidation was elevated after treatment with MEHP, MINP, MIHP, and MIDP but not MNOP or M711P, and with all but MIHP in mouse hepatocytes. The eight phthalates produced no marked change on peroxisomal g -oxidation in hepatocytes from other species. These data provide additional evidence that the toxicological effects of phthalate esters are species specific.


Toxicologic Pathology | 2011

Dose-Related Induction of Hepatic Preneoplastic Lesions by Diethylnitrosamine in C57BL/6 Mice:

Masahiko Kushida; Lisa M. Kamendulis; Tyler Peat; James E. Klaunig

The C57BL/6 mouse strain (or derivation of this strain) is used as a background for many transgenic mouse models. This strain has a relatively low susceptibility to chemically induced hepatocarcinogenesis compared with other commonly used experimental mouse strains. In the present study, the authors treated C57BL/6 mice with 25, 50, and 75 mg/kg of diethylnitrosamine (DEN) for 4 or 8 weeks by intraperitoneal injection to investigate the dose-response pattern of preneoplastic and neoplastic lesion formation in the liver. DEN induced preneoplastic lesions and cytokeratin 8/18–positive foci in a dose-dependent manner. In the 75 mg/kg for 8 weeks treatment group, hepatocellular adenoma, cholangioma and hemangioma, and cytokeratin 19–positive foci were also induced, but a significant decrease in body weight was observed. The suitable DEN treatment range for this strain was concluded to be from 75 mg/kg for 4 weeks (total amount = 300 mg/kg) to 50 mg/kg for 8 weeks (total amount = 400 mg/kg). These results should prove useful for future studies investigating hepatocarcinogenesis in both the background C57BL/6 strain and other transgenic mouse models derived from it.


BMC Research Notes | 2011

Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies.

Jae-Seung Park; Sneha Surendran; Lisa M. Kamendulis; Núria Morral

BackgroundPrimary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA) or microRNA (miRNA). New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity.FindingsWe have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells) as well as double stranded RNA (>90% with siRNA or microRNA). In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA.ConclusionsWe have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.


Cell Biology and Toxicology | 1999

The effect of acrylonitrile on gap junctional intercellular communication in rat astrocytes

Lisa M. Kamendulis; Jiazhong Jiang; Haizhou Zhang; H. deFeijter-Rupp; James E. Trosko; James E. Klaunig

Rats chronically exposed to acrylonitrile (ACN) have shown a dose-dependent increase in the incidence of astrocytomas in the brain. The mechanism(s) by which ACN induces cancer in rodents has not been established. ACN does not appear to be directly genotoxic in the brain and thus a nongenotoxic mode of action has been proposed. Inhibition of gap junctional intercellular communication (GJIC) has been shown to be a property of many nongenotoxic carcinogens. The present study examined the effects of ACN on GJIC in a rat astrocyte transformed cell line, DI TNC1 cells (a target cell for ACN carcinogenicity) and primary cultured hepatocytes (a nontarget cell for ACN carcinogenicity). ACN inhibited GJIC in rat astrocytes in a dose-dependent manner. Inhibition of GJIC was observed following 2 h treatment with 0.10 mmol/L and 1.00 mmol/L ACN. However, in primary cultured hepatocytes, ACN exposed did not result in inhibition of GJIC even after 48 h of continued treatment. In the astrocytes, GJIC inhibition plateaued after 4 h of treatment and remained blocked throughout the entire experimental period examined. Inhibition of GJIC in DI TNC1 cells was reversed by removal of ACN from the culture medium after 4 or 24 h of treatment. Cotreatment of astrocytes with vitamin E reduced the effect of ACN-induced inhibition of GJIC. Similarly, inhibition of GJIC was prevented by treatment with 2-oxothiazolidine-4-carboxylic acid (OTC), a precursor of glutathione synthesis. Decreasing cellular glutathione by treatment with buthionine sulfoxamine alone (without ACN) did not affect GJIC in astrocytes. Collectively, these results demonstrate that treatment with ACN caused a selective inhibition of GJIC in rat DI TNC1 astrocytes (the target cell type), but not in rat hepatocytes (a nontarget tissue). Inhibition of GJIC in astrocytes was reversed by treatment with antioxidants and suggests a potential role for oxidative stress in ACN-induced carcinogenesis.


Toxicology Letters | 2002

Effects of 2-butoxyethanol on hepatic oxidative damage.

Joungjoa Park; Lisa M. Kamendulis; James E. Klaunig

2-Butoxyethanol has been reported to induce an increase in liver tumors in male B6C3F1 mice following chronic inhalation while rats, similarly treated, showed no increase in liver tumors. The mechanism for the selective induction of cancer in mouse liver is unknown, however, 2-butoxyethanol has been shown to induce hemolysis in mice, resulting in an accumulation of hemosiderin (iron) in the liver. Previous studies by our group and others have shown that mouse liver compared to other rodent species has a lower antioxidant capacity and appears to be more susceptible to chemically-induced oxidative damage. Since iron is known to produce hydroxyl radicals (through the Fenton reaction), we have proposed that the 2-butoxyethanol-induced iron overload (through hemolysis) may contribute to the induction of liver neoplasia in the mouse. In the present studies, 2-butoxyethanol induced oxidative stress in the liver of mice following 7-day treatment by gavage. These studies also examined whether 2-butoxyethanol, 2-butoxy acetic acid (a major metabolite of 2-butoxyethanol) or iron (FeSO(4)) produced oxidative stress in mouse and rat hepatocytes. Oxidative stress was examined by measuring oxidative DNA damage (OH8dG), lipid peroxidation (MDA formation) and cellular vitamin E concentrations. Neither 2-butoxyethanol or 2-butoxyacetic acid induced changes in the oxidative stress parameters examined in either rat or mouse hepatocytes. In contrast, FeSO(4) produced a dose-related increase in OH8dG and MDA and a decrease in vitamin E levels following 24 h treatment. Mouse hepatocytes were more sensitive than rat hepatocytes to the oxidative damage induced by the FeSO(4). FeSO(4)-induced oxidative stress was not increased by co-treatment of FeSO(4) with either 2-butoxyethanol or 2-butoxy acetic acid. These results support the proposal that the induction of hepatic oxidative stress by 2-butoxyethanol in vivo occurs secondary to induction of hemolysis and iron deposition in the liver rather than as a direct action of 2-butoxyethanol or its main metabolite, 2-butoxy acetic acid.


Journal of Toxicology and Environmental Health | 2001

Comparative effects of dieldrin on hepatic ploidy, cell proliferation, and apoptosis in rodent liver.

Lisa M. Kamendulis; Kyle L. Kolaja; Donald E. Stevenson; Earl F. Walborg; James E. Klaunig

Dieldrin-induced hepatocarcinogenesis, which is seen only in the mouse, apparently occurs through a nongenotoxic mechanism. Previous studies have demonstrated that dieldrin induces hepatic DNA synthesis in mouse, but not rat liver. A number of nongenotoxic hepatocarcinogens have been shown to increase hepatocyte nuclear ploidy following acute and subchronic treatment in rodents, suggesting that an induction of hepatocyte DNA synthesis may occur without a concomitant increase in cell division. The current study examined the effects of dieldrin on changes in hepatocyte DNA synthesis, mitosis, apoptosis, and ploidy in mouse liver (the sensitive strain and target tissue for dieldrin-induced carcinogenicity) and the rat liver (an insensitive species). Male F344 rats and B6C3F1 mice were treated with 0, 1, 3, or 10 mg dieldrin/kg diet and were sampled after 7, 14, 28, or 90 d on diet. Liver from mice fed 10 mg dieldrin/kg diet exhibited significantly increased DNA synthesis and mitosis at 14, 28, or 90 d on diet. In rats, no increase in DNA synthesis or mitotic index was observed. The apoptotic index in liver of mice and rats did not change over the 90-d study period. Exposure of mice to only the highest dose of dieldrin produced a significant increase in octaploid (8N) hepatocytes and a decrease in diploid (2N) hepatocytes, which were restricted primarily to centrilobular hepatocytes, with the periportal region showing little or no change from control. No changes in hepatocyte nuclear ploidy were observed in the rat. This study demonstrates that exposure to high concentrations of dieldrin is accompanied by increased nuclear ploidy and mitosis in mouse, but not rat, liver. It is proposed that the observed increase in nuclear ploidy in the mouse may reflect an adaptive response to dieldrin exposure.


Circulation | 2014

Neurofibromin-deficient myeloid cells are critical mediators of aneurysm formation in vivo

Fang Li; Brandon D. Downing; Lucy C. Smiley; Julie A. Mund; Matthew R. DiStasi; Waylan K. Bessler; Kara N. Sarchet; Daniel M. Hinds; Lisa M. Kamendulis; Cynthia M. Hingtgen; Jamie Case; D. Wade Clapp; Simon J. Conway; Brian K. Stansfield; David A. Ingram

Background— Neurofibromatosis type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in the development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results— With the use of an angiotensin II–induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/–) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show that loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/– aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin reduced aneurysm formation in Nf1+/– mice. Conclusion— These data provide genetic and pharmacological evidence that Nf1+/– myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target.

Collaboration


Dive into the Lisa M. Kamendulis's collaboration.

Top Co-Authors

Avatar

James E. Klaunig

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline H. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge