Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa M. Schrott is active.

Publication


Featured researches published by Lisa M. Schrott.


Molecular Therapy | 2010

Expansive Gene Transfer in the Rat CNS Rapidly Produces Amyotrophic Lateral Sclerosis Relevant Sequelae When TDP-43 is Overexpressed

David B. Wang; Robert D. Dayton; Phillip P Henning; Cooper D. Cain; Li Ru Zhao; Lisa M. Schrott; Elysse A. Orchard; David Knight; Ronald L. Klein

Improved spread of transduction in the central nervous system (CNS) was achieved from intravenous administration of adeno-associated virus serotype-9 (AAV9) to neonatal rats. Spinal lower motor neuron transduction efficiency was estimated to be 78% using the highest vector dose tested at a 12-week interval. The widespread expression could aid studying diseases that affect both the spinal cord and brain, such as amyotrophic lateral sclerosis (ALS). The protein most relevant to neuropathology in ALS is transactive response DNA-binding protein 43 (TDP-43). When expressed in rats, human wild-type TDP-43 rapidly produced symptoms germane to ALS including paralysis of the hindlimbs and muscle wasting, and mortality over 4 weeks that did not occur in controls. The hindlimb atrophy and weakness was evidenced by assessments of rotarod, rearing, overall locomotion, muscle mass, and histology. The muscle wasting suggested denervation, but there was only 14% loss of motor neurons in the TDP-43 rats. Tissues were negative for ubiquitinated, cytoplasmic TDP-43 pathology, suggesting that altering TDP-43s nuclear function was sufficient to cause the disease state. Other relevant pathology in the rats included microgliosis and degenerating neuronal perikarya positive for phospho-neurofilament. The expression pattern encompassed the distribution of neuropathology of ALS, and could provide a rapid, relevant screening assay for TDP-43 variants and other disease-related proteins.


PLOS ONE | 2013

Acute Physiological Stress Promotes Clustering of Synaptic Markers and Alters Spine Morphology in the Hippocampus

Veronica Sebastian; Jim Brian Estil; Daniel Chen; Lisa M. Schrott; Peter Serrano

GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ) and post-synaptic density-95 (PSD-95) are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML) of the dentate gyrus (DG), stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.


Brain Research | 2008

Prenatal opiate exposure impairs radial arm maze performance and reduces levels of BDNF precursor following training

Lisa M. Schrott; La’Tonya M. Franklin; Peter Serrano

Prenatal exposure to opiates, which is invariably followed by postnatal withdrawal, can affect cognitive performance. To further characterize these effects, we examined radial 8-arm maze performance and expression of brain derived neurotrophic factor (BDNF) in male rats prenatally exposed to the opiate l-alpha-acetylmethadol (LAAM). Female rats received 1.0 mg/kg/day LAAM or water via daily oral gavage for 28 days prior to breeding, during breeding, and throughout pregnancy. Pups were fostered to non-treated lactating dams at birth and underwent neonatal opiate withdrawal. At 5-6 months, prenatal water- and LAAM-exposed males (n=6 each; non-littermates) received radial arm maze training consisting of ten trials a day for five days and three retention trials on day six. Rats prenatally exposed to LAAM had poorer maze performance, decreased percent correct responding and more reference and working memory errors than prenatal water-treated controls. However, they were able to acquire the task by the end of training. There were no differences between the groups on retention 24 h after testing. Following retention testing, hippocampi were removed and protein extracted from cytosol and synaptic fractions. Western blots were used to measure levels of mature and precursor BDNF protein, as well as the BDNF receptor TrkB. BDNF precursor protein was significantly decreased in the synaptic fraction of trained prenatal LAAM-treated rats compared to prenatal water-treated trained controls. No effects were found for the full-length or truncated TrkB receptor. In untrained rats, prenatal treatment did not affect any of the measures. These data suggest that prenatal opiate exposure and/or postnatal withdrawal compromise expression of proteins involved in the neural plasticity underlying learning.


Behavioural Brain Research | 2010

Prenatal oxycodone exposure impairs spatial learning and/or memory in rats

Chris P. Davis; La’Tonya M. Franklin; Gabriel S. Johnson; Lisa M. Schrott

Recent changes in demographic patterns of drug use have resulted in the increased non-medical use of prescription opiates. These users are younger and more likely to be female, which has the potential for increasing rates of in utero exposure. Therefore, we developed a rat model that simulates a prescription opiate-dependent woman who becomes pregnant. Adult female Sprague-Dawley rats were treated for 30 days via oral gavage with ascending doses of oxycodone HCl up to a final dose of 15mg/kg/day, which was maintained during breeding and gestation. Controls were treated with water. The adult male offspring of these treated dams were tested on the radial arm maze, the Morris water maze (with a short and a long intertrial interval), and a spatial T-maze. Prenatal oxycodone exposure led to a deficit in the radial arm maze characterized by a greater number of reference memory errors, especially in the beginning of testing. In contrast, in the T-maze, prenatal oxycodone-exposed rats learned the task as well as well as the prenatal water controls. However, they had a modest deficit in retention of the task when assessed 5 days after acquisition training ended. For the Morris water maze, the intertrial interval affected the pattern of learning. While there was no deficit when the training had a short intertrial interval, when there was a long intertrial interval, prenatal oxycodone-exposed rats had poorer acquisition. The spatial learning deficit was characterized by and increased latency to find and a greater distance traveled to the platform in the prenatal oxycodone-exposed rats. These data were corroborated by analysis of the behavioral search strategy, which showed a decreased use of spatial strategies and an increase in non-spatial strategies, especially wall-hugging, in prenatal oxycodone-exposed rats as compared to prenatal water control rats on day 2 of acquisition. These results indicate that prenatal oxycodone exposure consistently impairs learning and memory in a battery of spatial tasks.


International Journal of Radiation Oncology Biology Physics | 2012

TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

Gulshan Sunavala-Dossabhoy; Senthilnathan Palaniyandi; Charles J. Richardson; Arrigo De Benedetti; Lisa M. Schrott; Gloria Caldito

PURPOSE Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. METHODS The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. RESULTS We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D₀ = 4.13 ± 1.0 Gy; α/β = 0 Gy) compared with cells transduced with the TAT peptide (D₀ = 4.91 ± 1.0 Gy; α/β = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). CONCLUSIONS The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.


PLOS ONE | 2013

PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory

Veronica Sebastian; Tatyana Vergel; Raheela Baig; Lisa M. Schrott; Peter Serrano

It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing.


Brain Research | 2007

Prenatal Opiate Exposure Attenuates LPS-Induced Fever in Adult Rats: Role of Interleukin-1β

Kathryn L. Hamilton; La ’Tonyia M. Franklin; Sabita Roy; Lisa M. Schrott

Much is known about the immunomodulatory effects of opiate exposure and withdrawal in adult rats. However, little research has delved into understanding the immunological consequences of prenatal opiate exposure and postnatal withdrawal. The purpose of the current study was to measure changes in responding to immune stimulation in adult rats following prenatal opiate exposure. Further, we sought to characterize the role of interleukin (IL)-1beta in these changes. Following prenatal exposure to the long-acting opiate l-alpha-acetylmethadol (LAAM), adult male and female rats were assessed for their fever response to lipopolysaccharide (LPS). Blood and tissue samples were collected to measure circulating IL-1beta and IL-1beta protein in the hypothalamus and spleen. Prenatal LAAM exposure resulted in a blunted fever response to LPS injection without any changes in basal body temperature or in response to saline injection. Circulating IL-1beta was not affected by prenatal LAAM exposure, nor was IL-1beta protein in the spleen. Interestingly, mature IL-1beta protein was elevated in the hypothalamus of prenatally LAAM-treated rats. These results indicate that prenatal opiate exposure blunts the fever response of adult offspring. Direct action of IL-1beta is likely not the cause of the dysfunction reported here. However, alterations in signaling mechanisms downstream from IL-1beta may play a role in the altered fever response in adult rats treated prenatally with opiates.


Pathophysiology | 2017

Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage

David E. Connor; Ganta Vijay Chaitanya; Prashant Chittiboina; Paul McCarthy; L. Keith Scott; Lisa M. Schrott; Alireza Minagar; Anil Nanda; J. Steven Alexander

BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.


BMC Neuroscience | 2015

Chronic oxycodone induces integrated stress response in rat brain

Ruping Fan; Lisa M. Schrott; Stephen Snelling; Julius Ndi; Thomas C. Arnold; Nadejda L. Korneeva


BMC Neuroscience | 2018

Chronic oxycodone induces axonal degeneration in rat brain

Ruping Fan; Lisa M. Schrott; Thomas C. Arnold; Stephen Snelling; Meghana Rao; Derrel D. Graham; Angela Cornelius; Nadejda L. Korneeva

Collaboration


Dive into the Lisa M. Schrott's collaboration.

Top Co-Authors

Avatar

Peter Serrano

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prashant Chittiboina

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge