Lisa M. Wolfe
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa M. Wolfe.
Journal of Proteome Research | 2010
Lisa M. Wolfe; Spencer B. Mahaffey; Nicole A. Kruh; Karen M. Dobos
The cell envelope of Mycobacterium tuberculosis (Mtb) is complex and diverse; composed of proteins intermingled in a matrix of peptidoglycan, mycolic acids, lipids, and carbohydrates. Proteomic studies of the Mtb cell wall have been limited; nonetheless, the characterization of resident and secreted proteins associated with the cell wall are critical to understanding bacterial survival and immune modulation in the host. In this study, the cell wall proteome was defined in order to better understand its unique biosynthetic and secretion processes. Mtb cell wall was subjected to extraction with organic solvents to remove noncovalently bound lipids and lipoglycans and remaining proteins were solubilized with either SDS, Guanidine-HCl, or TX-114. These extracts were analyzed by two-dimensional gel electrophoresis and mass-spectrometry and resulted in the identification of 234 total proteins. The lipoproteome of Mtb, enriched in the TX-114 extract, was further resolved by multidimensional chromatography and mass spectrometry to identify an additional 294 proteins. A query of the 528 total protein identifications against Neural Network or Hidden Markov model algorithms predicted secretion signals in 87 proteins. Classification of these 528 proteins also demonstrated that 35% are involved in small molecule metabolism and 25% are involved in macromolecule synthesis and degradation building upon evidence that the Mtb cell wall is actively engaged in mycobacterial survival and remodeling.
PLOS ONE | 2014
Nicole A. Kruh-Garcia; Lisa M. Wolfe; Lelia H. Chaisson; William Worodria; Payam Nahid; Jeff S. Schorey; J. Lucian Davis; Karen M. Dobos
The identification of easily measured, accurate diagnostic biomarkers for active tuberculosis (TB) will have a significant impact on global TB control efforts. Because of the host and pathogen complexities involved in TB pathogenesis, identifying a single biomarker that is adequately sensitive and specific continues to be a major hurdle. Our previous studies in models of TB demonstrated that exosomes, such as those released from infected macrophages, contain mycobacterial products, including many Mtb proteins. In this report, we describe the development of targeted proteomics assays employing multiplexed multiple reaction monitoring mass spectrometry (MRM-MS) in order to allow us to follow those proteins previously identified by western blot or shotgun mass spectrometry, and enhance biomarker discovery to include detection of Mtb proteins in human serum exosomes. Targeted MRM-MS assays were applied to exosomes isolated from human serum samples obtained from culture-confirmed active TB patients to detect 76 peptides representing 33 unique Mtb proteins. Our studies revealed the first identification of bacteria-derived biomarker candidates of active TB in exosomes from human serum. Twenty of the 33 proteins targeted for detection were found in the exosomes of TB patients, and included multiple peptides from 8 proteins (Antigen 85B, Antigen 85C, Apa, BfrB, GlcB, HspX, KatG, and Mpt64). Interestingly, all of these proteins are known mycobacterial adhesins and/or proteins that contribute to the intracellular survival of Mtb. These proteins will be included as target analytes in future validation studies as they may serve as markers for persistent active and latent Mtb infection. In summary, this work is the first step in identifying a unique and specific panel of Mtb peptide biomarkers encapsulated in exosomes and reveals complex biomarker patterns across a spectrum of TB disease states.
Molecular & Cellular Proteomics | 2013
Lisa M. Wolfe; Usha Veeraraghavan; Susan Idicula-Thomas; Stephan C. Schürer; Krister Wennerberg; Robert C. Reynolds; Gurdyal S. Besra; Karen M. Dobos
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the leading causes of death worldwide despite extensive research, directly observed therapy using multidrug regimens, and the widespread use of a vaccine. The majority of patients harbor the bacterium in a state of metabolic dormancy. New drugs with novel modes of action are needed to target essential metabolic pathways in M. tuberculosis; ATP-competitive enzyme inhibitors are one such class. Previous screening efforts for ATP-competitive enzyme inhibitors identified several classes of lead compounds that demonstrated potent anti-mycobacterial efficacy as well as tolerable levels of toxicity in cell culture. In this report, a probe-based chemoproteomic approach was used to selectively profile the M. tuberculosis ATP-binding proteome in normally growing and hypoxic M. tuberculosis. From these studies, 122 ATP-binding proteins were identified in either metabolic state, and roughly 60% of these are reported to be essential for survival in vitro. These data are available through ProteomeXchange with identifier PXD000141. Protein families vital to the survival of the tubercle bacillus during hypoxia emerged from our studies. Specifically, along with members of the DosR regulon, several proteins involved in energy metabolism (Icl/Rv0468 and Mdh/Rv1240) and lipid biosynthesis (UmaA/Rv0469, DesA1/Rv0824c, and DesA2/Rv1094) were found to be differentially abundant in hypoxic versus normal growing cultures. These pathways represent a subset of proteins that may be relevant therapeutic targets for development of novel ATP-competitive antibiotics.
Scientific Reports | 2016
Gustavo Diaz; Lisa M. Wolfe; Nicole A. Kruh-Garcia; Karen M. Dobos
Tuberculosis (TB) is the deadliest infectious disease worldwide. One obstacle hindering the elimination of TB is our lack of understanding of host-pathogen interactions. Exosomes, naturally loaded with microbial molecules, are circulating markers of TB. Changes in the host protein composition of exosomes from Mycobacterium tuberculosis (Mtb)-infected cells have not been described, can contribute to our understanding of the disease process, and serve as a direct source of biomarkers or as capture targets to enrich for exosomes containing microbial molecules. Here, the protein composition of exosomes from Mtb-infected and uninfected THP-1-derived macrophages was evaluated by tandem-mass-spectrometry and differences in protein abundances were assessed. Our results show that infection with Mtb leads to significant changes in the protein composition of exosomes. Specifically, 41 proteins were significantly more abundant in exosomes from Mtb-infected cells; 63% of these were predicted to be membrane associated. Thus, we used a novel biotinylation strategy to verify protein localization, and confirmed the localization of some of these proteins in the exosomal membrane. Our findings reveal another important scenario where Mtb could be influencing changes in host cells that unveil new features of the host-pathogen interaction and may also be exploited as a source of biomarkers for TB.
Proteomics Clinical Applications | 2016
Olanisun Olufemi Adewole; Greg Erhabor; To Adewole; Abiodun Oluwasesan Ojo; Harriet Oshokoya; Lisa M. Wolfe; Jessica E. Prenni
Excessive sweating is a common symptom of the disease and an unexplored biofluid for TB diagnosis; we conducted a proof‐of‐concept study to identify potential diagnostic biomarkers of active TB in eccrine sweat.
Scientific Reports | 2017
Melanie J. Harriff; Lisa M. Wolfe; Gwendolyn Swarbrick; Megan Null; Meghan E. Cansler; Elizabeth T. Canfield; Todd M. Vogt; Katelynne Gardner Toren; Wei Li; Mary Jackson; Deborah A. Lewinsohn; Karen M. Dobos; David M. Lewinsohn
Infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, remains a global health concern. Both classically and non-classically restricted cytotoxic CD8+ T cells are important to the control of Mtb infection. We and others have demonstrated that the non-classical MHC I molecule HLA-E can present pathogen-derived peptides to CD8+ T cells. In this manuscript, we identified the antigen recognized by an HLA-E-restricted CD8+ T cell clone isolated from an Mtb latently infected individual as a peptide from the Mtb protein, MPT32. Recognition by the CD8+ T cell clone required N-terminal O-linked mannosylation of MPT32 by a mannosyltransferase encoded by the Rv1002c gene. This is the first description of a post-translationally modified Mtb-derived protein antigen presented in the context of an HLA-E specific CD8+ T cell immune response. The identification of an immune response that targets a unique mycobacterial modification is novel and may have practical impact in the development of vaccines and diagnostics.
Biotechnology and Bioengineering | 2017
Thomas S. Reynolds; Colleen M. Courtney; Keesha E. Erickson; Lisa M. Wolfe; Anushree Chatterjee; Prashant Nagpal; Ryan T. Gill
The economical production of chemicals and fuels by microbial processes remains an intense area of interest in biotechnology. A key limitation in such efforts concerns the availability of key co-factors, in this case NADPH, required for target pathways. Many of the strategies pursued for increasing NADPH availability in Escherichia coli involve manipulations to the central metabolism, which can create redox imbalances and overall growth defects. In this study we used a reactive oxygen species based selection to search for novel methods of increasing NADPH availability. We report a loss of function mutation in the gene hdfR appears to increase NADPH availability in E. coli. Additionally, we show this excess NADPH can be used to improve the production of 3HP in E. coli.
Methods of Molecular Biology | 2015
Megan Lucas; Lisa M. Wolfe; Rachel M. Hazenfield; Jade Kurihara; Nicole A. Kruh-Garcia; John T. Belisle; Karen M. Dobos
The extraction and isolation of native bacterial proteins continue to be valuable technical pursuits in order to understand bacterial physiology, screen for virulence determinants, and describe antigens. In this chapter, methods for the manipulation of whole mycobacterial cells are described in detail. Specifically, the concentration of spent culture filtrate media is described in order to permit separation of soluble, secreted proteins; several discrete separation techniques, including precipitation of protein mixtures with ammonium sulfate and separation of proteins by hydrophobic chromatography are also provided. Similarly, the generation of whole cell lysate and facile separation of lysate into subcellular fractions to afford cell wall, cell membrane, and cytosol enriched proteins is described. Due to the hydrophobic nature of cell wall and cell membrane proteins, several extraction protocols to resolve protein subsets (such as extraction with urea and SDS) are also provided, as well as a separation technique (isoelectric focusing) that can be applied to separate hydrophobic proteins. Lastly, two commonly used analytical techniques, in-gel digestion of proteins for LC-MS and analysis of intact proteins by MALDI-ToF MS, are provided for rapid analysis of discrete proteins within subcellular or chromatographic fractions. While these methods were optimized for the manipulation of Mycobacterium tuberculosis cells, they have been successfully applied to extract and isolate Mycobacterium leprae, Mycobacterium ulcerans, and Mycobacterium avium proteins. In addition, a number of these methods may be applied to extract and analyze mycobacterial proteins from cell lines and host derived samples.
Infection and Immunity | 2017
Ryan A. Ferris; Patrick M. McCue; Grace I. Borlee; Kristina E. Glapa; Kevin H. Martin; Mihnea R. Mangalea; Margo L. Hennet; Lisa M. Wolfe; Corey D. Broeckling; Bradley R. Borlee
ABSTRACT Bacteria in a biofilm community have increased tolerance to antimicrobial therapy. To characterize the role of biofilms in equine endometritis, six mares were inoculated with lux-engineered Pseudomonas aeruginosa strains isolated from equine uterine infections. Following establishment of infection, the horses were euthanized and the endometrial surfaces were imaged for luminescence to localize adherent lux-labeled bacteria. Samples from the endometrium were collected for cytology, histopathology, carbohydrate analysis, and expression of inflammatory cytokine genes. Tissue-adherent bacteria were present in focal areas between endometrial folds (6/6 mares). The Pel exopolysaccharide (biofilm matrix component) and cyclic di-GMP (biofilm-regulatory molecule) were detected in 6/6 mares and 5/6 mares, respectively, from endometrial samples with tissue-adherent bacteria (P < 0.05). A greater incidence (P < 0.05) of Pel exopolysaccharide was present in samples fixed with Bouins solution (18/18) than in buffered formalin (0/18), indicating that Bouins solution is more appropriate for detecting bacteria adherent to the endometrium. There were no differences (P > 0.05) in the number of inflammatory cells in the endometrium between areas with and without tissue-adherent bacteria. Neutrophils were decreased (P < 0.05) in areas surrounding tissue-adherent bacteria compared to those in areas free of adherent bacteria. Gene expression of interleukin-10, an immune-modulatory cytokine, was significantly (P < 0.05) increased in areas of tissue-adherent bacteria compared to that in endometrium absent of biofilm. These findings indicate that P. aeruginosa produces a biofilm in the uterus and that the host immune response is modulated focally around areas with biofilm, but inflammation within the tissue is similar in areas with and without biofilm matrix. Future studies will focus on therapeutic options for elimination of bacterial biofilm in the equine uterus.
Journal of Biological Chemistry | 2018
Adam J. Chicco; Catherine H. Le; Erich Gnaiger; Hans C. Dreyer; Jonathan B. Muyskens; Angelo D'Alessandro; Travis Nemkov; Austin D. Hocker; Jessica E. Prenni; Lisa M. Wolfe; Nathan M. Sindt; Andrew T. Lovering; Andrew W. Subudhi; Robert C. Roach
Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo. Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress.