Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Mullen is active.

Publication


Featured researches published by Lisa Mullen.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal

Sonia Salzano; Paola Checconi; Eva-Maria Hanschmann; Christopher Horst Lillig; Lucas D. Bowler; Philippe Chan; David Vaudry; Manuela Mengozzi; Lucia Coppo; Sandra Sacre; Kondala R. Atkuri; Bita Sahaf; Leonard A. Herzenberg; Leonore A. Herzenberg; Lisa Mullen; Pietro Ghezzi

Significance Inflammation often complicates diseases associated with oxidative stress. This study shows that inflammatory macrophages release proteins with specific forms of cysteine oxidation to disulfides, particularly glutathionylation. Redox proteomics identified peroxiredoxin 2 (PRDX2) as a protein released in glutathionylated form by inflammation both in vivo and in vitro. Extracellular PRDX2 then triggers the production of TNF-α. These data indicate that redox-dependent mechanisms, in an oxidative cascade, can induce inflammation. The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the –SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.


Journal of Insect Physiology | 2002

Adipokinetic hormone enhances laminarin and bacterial lipopolysaccharide-induced activation of the prophenoloxidase cascade in the African migratory locust, Locusta migratoria

Graham J. Goldsworthy; Kwaku Opoku-Ware; Lisa Mullen

Lom-AKH-I enhances the activation in vivo of prophenoloxidase in the haemolymph of the African migratory locust, Locusta migratoria, in response to challenge with laminarin. AKH does not influence the speed or initial magnitude of the phenoloxidase response to laminarin, but prolongs the period of activation of the enzyme in a dose-dependent manner. Injections of preparations of bacterial lipopolysaccharide (LPS) do not activate prophenoloxidase in vivo, but co-injection of Lom-AKH-I with commercial preparations of LPS from Klebsiella pneumoniae, Escherichia coli, or Shigella flexneri (but not one from Pseudomonas aeroginosa) results in dose-dependent increases in the levels of phenoloxidase that persist in the haemolymph for several hours. It is argued that the effects of AKH on phenoloxidase activation in locusts described here are, at least in part, related directly to changes in lipid metabolism brought about by the hormone.


Trends in Microbiology | 2006

Phage display in the study of infectious diseases

Lisa Mullen; Sean P. Nair; John M. Ward; Andrew N. Rycroft; Brian Henderson

Microbial infections are dependent on the panoply of interactions between pathogen and host and identifying the molecular basis of such interactions is necessary to understand and control infection. Phage display is a simple functional genomic methodology for screening and identifying protein–ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists. Phage display is also used widely in various forms, including the use of fragment libraries of whole microbial genomes, to identify peptide–ligand and protein–ligand interactions that are of importance in infection. In particular, this technique has proved successful in identifying microbial adhesins that are vital for colonization.


Physiological Entomology | 2003

Interactions between the endocrine and immune systems in locusts

Graham J. Goldsworthy; Lisa Mullen; Kwaku Opoku-Ware; Shashi Chandrakant

Abstract. The prophenoloxidase cascade in the haemolymph of mature adult Locusta migratoria migratorioides (R & F) is activated in response to injection of laminarin, a β‐1,3 glucan. Co‐injection of adipokinetic hormone‐I (Lom‐AKH‐I) and laminarin prolongs the activation of the enzyme in a dose‐dependent manner. However, injections of bacterial lipopolysaccharide (LPS) do not activate prophenoloxidase unless AKH is co‐injected, when there is a dose‐dependent increase in the level of phenoloxidase that persists in the haemolymph for several hours. Even when AKH is co‐injected, the highest levels of phenoloxidase activity are always greater after injection of laminarin than after LPS, and these two immunogens must activate the prophenoloxidase cascade by quite distinct pathways. In the present study, interactions between the endocrine and immune systems were examined with respect to activation of prophenoloxidase and the formation of nodules: injection of LPS induces nodule formation in adult locusts. With LPS from Pseudomonas aeruginosa, nodules form exclusively in dense accumulations in the anterior portion of the abdomen on either side of the dorsal blood vessel associated with the dorsal diaphragm. However, with LPS from Escherichia coli, fewer nodules are formed but with a similar distribution, except that occasionally some nodules are aligned additionally on either side of the ventral nerve cord. Co‐injection of Lom‐AKH‐I with LPS from either bacteria stimulates greater numbers of nodules to be formed. This effect of coinjection of AKH on nodule formation is seen at low doses of hormone with only 0.3 or 0.4 pmol of Lom‐AKH‐1, respectively, increasing the number of nodules by 50%. Injections of octopamine or 5‐hydroxytryptamine do not mimic either of the actions of Lom‐AKH‐I described here. Co‐injection of an angiotensin‐converting enzyme inhibitor, captopril, reduces nodule formation in response to injections of LPS but has no effect on the activation of phenoloxidase. Co‐injection of an inhibitor of eicosanoid synthesis, dexamethasone, with LPS influences nodule formation (with or without AKH) in different ways according to the dose of dexamethasone used, but does not affect activation of prophenoloxidase. Eicosanoid synthesis is important for nodule formation, but not for the activation of the prophenoloxidase cascade in locust haemolymph.


Insect Biochemistry and Molecular Biology | 2003

Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens

Lisa Mullen; Graham J. Goldsworthy

In Locusta migratoria, activation of phenoloxidase in the haemolymph in response to injection of laminarin is age-dependent: being absent in fifth instar nymphs and newly emerged adults, and only becoming evident four days after the final moult. This pattern of change in phenoloxidase activation correlates with the pattern of change in the concentration of apolipophorin-III (apoLp-III) in the haemolymph. Injection of a conspecific adipokinetic hormone (Lom-AKH-I) has no effect on the phenoloxidase response in nymphs or newly emerged adults but, in adults older than four days, co-injection of the hormone with laminarin prolongs the activation of phenoloxidase in the haemolymph: a similar enhancement of the response to laminarin is observed in locusts that have been starved for 48 h but not injected with AKH-I. During most of the fifth stadium, injection of laminarin results in a decrease in the level of prophenoloxidase in the haemolymph; an effect that is not observed in adults of any age. Marked changes in the concentration of apoLp-III, and the formation of LDLp in the haemolymph, are observed after injection of laminarin (or LPS) and these are remarkably similar, at least qualitatively, to those that occur after injection of AKH-I. The involvement of lipophorins in the activation of locust prophenoloxidase in response to immunogens is discussed.


Molecular Medicine | 2015

Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion

Lisa Mullen; Eva-Maria Hanschmann; Christopher Horst Lillig; Leonore A. Herzenberg; Pietro Ghezzi

Nonclassical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of nonclassical secretion. We have shown recently that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms, as has been postulated for the inflammatory mediators interleukin-1β (IL-1β) and high mobility group box-1 (HMGB1). We show here that circulating Prdx1 and 2 are present exclusively as disulfide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α, and this release can be induced with an oxidant. By contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway, instead, both Prdx1 and 2 are released in exosomes from both human embryonic kidney (HEK) cells and monocytic cells. Serum Prdx1 and 2 also are associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signaling mechanisms in inflammation.


PLOS ONE | 2015

Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

Paola Checconi; Sonia Salzano; Lucas D. Bowler; Lisa Mullen; Manuela Mengozzi; Eva Maria Hanschmann; Christopher Horst Lillig; Rossella Sgarbanti; Simona Panella; Lucia Nencioni; Anna Teresa Palamara; Pietro Ghezzi

Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.


Annals of the New York Academy of Sciences | 2005

Adipokinetic Hormone and the Immune Responses of Locusts to Infection

Graham J. Goldsworthy; Kwaku Opoku-Ware; Lisa Mullen

Abstract: Injections of Bacillus, or of blastospores from the entomopathogenic fungus, Metarhizium anisopliae, activate the prophenoloxidase (PPO) cascade, and coinjection of adipokinetic hormone‐I (AKH) enhances and prolongs these responses. When injected concurrently with an immunizing dose of live bacteria, AKH suppresses the appearance of antimicrobial activity and, after a short delay, increases the growth of bacteria within the hemocoel. Injections of live Escherichia coli or Pseudomonas aeruginosa into locusts fail to activate PPO in the hemolymph, even when coinjected with AKH. The coinjection of bacteria and hormone is rarely lethal to the locust. However, if locusts are injected with AKH when they are infected with Metarhizium, they die more rapidly than if no AKH is administered.


PLOS ONE | 2008

Pasteurellaceae ComE1 Proteins Combine the Properties of Fibronectin Adhesins and DNA Binding Competence Proteins

Lisa Mullen; Janine T. Bossé; Sean P. Nair; John M. Ward; Andrew N. Rycroft; Giles Robertson; Paul R. Langford; Brian Henderson

A novel fibronectin-binding protein from Pasteurella multocida (PM1665) that binds to the fibronectin type III9-10 modules via two helix-hairpin-helix motifs has recently been described [1]. This protein shares homology with competence-related DNA-binding and uptake proteins (ComEA and ComE) from Gram-positive and Gram-negative bacteria. Here, we show that recombinant PM1665 (now designated ComE1) also binds to DNA through the same helix-hairpin-helix motifs required for fibronectin-binding. This binding to DNA is non sequence-specific and is confined to double-stranded DNA. We have cloned and expressed ComE1 proteins from five members of the Pasteurellaceae in order to further investigate the function(s) of these proteins. When expressed as recombinant GST-fusion proteins, all of the homologues bound both to fibronectin and to double-stranded DNA. Inactivation of the gene encoding the ComE1 homologue in Actinobacillus pleuropneumoniae indicates major roles for these proteins in at least two processes: natural transformation, and binding of bacteria to fibronectin.


Arthritis Research & Therapy | 2015

Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease

Lisa Mullen; Giselle Chamberlain; Sandra Sacre

The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.

Collaboration


Dive into the Lisa Mullen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Gould

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gill Adams

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

John M. Ward

University College London

View shared research outputs
Top Co-Authors

Avatar

Pietro Ghezzi

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar

Sandrine Vessillier

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Sean P. Nair

UCL Eastman Dental Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge