Lisa Perilli
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Perilli.
BMC Genomics | 2013
Silvia Pizzini; Andrea Bisognin; Susanna Mandruzzato; Marta Biasiolo; Arianna Facciolli; Lisa Perilli; Elisabetta Rossi; Giovanni Esposito; Massimo Rugge; Pierluigi Pilati; Simone Mocellin; Donato Nitti; Stefania Bortoluzzi; Paola Zanovello
BackgroundQualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed.ResultsMost changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples.ConclusionsUsing a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development.
The Journal of Clinical Endocrinology and Metabolism | 2011
Carlo Foresta; Giacomo Strapazzon; Luca De Toni; Lisa Perilli; Antonella Di Mambro; Barbara Muciaccia; Leonardo Sartori; Riccardo Selice
WORKING HYPOTHESIS Mutations in the CYP2R1 gene, highly expressed in the testis and encoding vitamin D 25-hydroxylase, result in a vitamin D deficiency and a defective calcium homeostasis leading to rickets. OBJECTIVE Our aim was to investigate CYP2R1 expression in pathological testis samples and relate this to vitamin D metabolism in testiculopathic patients. DESIGN, PATIENTS, SETTING: Testis samples for in vitro study and 98 young men were transversally evaluated at Padovas Center for Male Gamete Cryopreservation. METHODS CYP2R1 mRNA expression and protein production were evaluated by quantitative RT-PCR, Western blot analysis, and immunofluorescence. Hormonal and bone-marker levels, and bone densitometry by dual-energy x-ray absorptiometry, were determined in patients with Sertoli-cell-only syndrome and severe hypospermatogenesis. RESULTS We found a lower gene and protein expression of CYP2R1 in samples with hypospermatogenesis and Sertoli-cell-only syndrome (P < 0.05) and a colocalization with INSL-3, a Leydig cell marker, at immunofluorescence. In all testiculopathic patients 25-hydroxyvitamin D levels were significantly lower and PTH levels higher compared to controls (P < 0.05). Furthermore, testiculopathic patients showed osteopenia and osteoporosis despite normal testosterone levels compared with controls both with increased bone-marker levels and altered dual-energy x-ray absorptiometry in the femoral neck and lumbar spine (for all parameters, P < 0.05). CONCLUSIONS Our data show an association between testiculopathy and alteration of the bone status, despite unvaried androgen and estrogen levels and no other evident cause of vitamin D reduction. Further studies in larger cohorts are needed to confirm our results.
PLOS ONE | 2011
Alberto Ferlin; Lisa Perilli; Lisa Gianesello; Giuseppe Taglialavoro; Carlo Foresta
Background Young men with mutations in the gene for the INSL3 receptor (Relaxin family peptide 2, RXFP2) are at risk of reduced bone mass and osteoporosis. Consistent with the human phenotype, bone analyses of Rxfp2 −/− mice showed decreased bone volume, alterations of the trabecular bone, reduced mineralizing surface, bone formation, and osteoclast surface. The aim of this study was to elucidate the INSL3/RXFP2 signaling pathways and targets in human osteoblasts. Methodology/Principal Findings Alkaline phosphatase (ALP) production, protein phosphorylation, intracellular calcium, gene expression, and mineralization studies have been performed. INSL3 induced a significant increase in ALP production, and Western blot and ELISA analyses of multiple intracellular signaling pathway molecules and their phosphorylation status revealed that the MAPK was the major pathway influenced by INSL3, whereas it does not modify intracellular calcium concentration. Quantitative Real Time PCR and Western blotting showed that INSL3 regulates the expression of different osteoblast markers. Alizarin red-S staining confirmed that INSL3-stimulated osteoblasts are fully differentiated and able to mineralize the extracellular matrix. Conclusions/Significance Together with previous findings, this study demonstrates that the INSL3/RXFP2 system is involved in bone metabolism by acting on the MAPK cascade and stimulating transcription of important genes of osteoblast maturation/differentiation and osteoclastogenesis.
International Journal of Andrology | 2011
Daniela Zuccarello; Alberto Ferlin; Andrea Garolla; Massimo Menegazzo; Lisa Perilli; Guido Ambrosini; Carlo Foresta
For fertilization to occur in mammals, ejaculated spermatozoa must reach the egg which, following ovulation has moved from the ovary into the Fallopian tube. Two active mechanisms of spermatozoa guidance have been shown in mammals: thermotaxis and chemotaxis. The identity of most of human spermatozoa chemoattractants is unknown, and herein we tested if SDF1 (chemokine stromal cell-derived factor-1) and its pathway is involved in spermatozoa chemotaxis. We found that SDF1 is expressed in the oocytes, endometrium and follicular fluid, as well as its specific receptor CXCR4 (chemokine CXC motif receptor 4) is expressed in the head of spermatozoa. By SDF1 gradient experiments, we stated that SDF1 is able to induce hyperactivation in spermatozoa leading to accumulation, to give rise to an increase in intracellular calcium concentration, and to preserve the mitochondrial status and not to induce acrosome reaction. Our findings suggest these phenomena could reflect spermatozoa chemotaxis, and that SDF1 action could represent an important event leading to egg fertilization, even if further studies regarding the link between spermatozoa accumulation and chemotaxis are mandatory. These data suggest that the SDF-1/CXCR4 signalling could be used to manipulate the human fertilization, to improve both the outcome of physiological or assisted reproduction, and to develop new contraceptive methods, by development of SDF1 or CXCR4 antagonist.
Molecular Oncology | 2014
Andrea Bisognin; Silvia Pizzini; Lisa Perilli; Giovanni Esposito; Simone Mocellin; Donato Nitti; Paola Zanovello; Stefania Bortoluzzi; Susanna Mandruzzato
Alternative splicing (AS) is a common mechanism which creates diverse RNA isoforms from a single gene, potentially increasing protein variety. Growing evidence suggests that this mechanism is closely related to cancer progression. In this study, whole transcriptome analysis was performed with GeneChip Human exon 1.0 ST Array from 80 samples comprising 23 normal colon mucosa, 30 primary colorectal cancer and 27 liver metastatic specimens from 46 patients, to identify AS events in colorectal cancer progression. Differentially expressed genes and exons were estimated and AS events were reconstructed by combining exon‐level analyses with AltAnalyze algorithms and transcript‐level estimations (MMBGX probabilistic method). The number of AS genes in the transition from normal colon mucosa to primary tumor was the most abundant, but fell considerably in the next transition to liver metastasis. 206 genes with probable AS events in colon cancer development and progression were identified, that are involved in processes and pathways relevant to tumor biology, as cell–cell and cell‐matrix interactions. Several AS events in VCL, CALD1, B3GNT6 and CTHRC1 genes, differentially expressed during tumor development were validated, at RNA and at protein level. Taken together, these results demonstrate that cancer‐specific AS is common in early phases of colorectal cancer natural history.
Fertility and Sterility | 2010
Carlo Foresta; Luca De Toni; Antonella Di Mambro; Alberto Ferlin; Lisa Perilli; Ilaria Bertuzzi; Alessandro Galan; Daniela Zuccarello
OBJECTIVE To study whether estrogen receptors (ERs) are expressed in vitro and in vivo by female circulating endothelial progenitor cells (EPCs); and the role of ERs in the periodic vascular damage and repair that occurs during the menstrual cycle. DESIGN Quantification of circulating progenitor cells, EPCs, and relative CXCR4+ fraction by flow cytometry. Quantification of plasma 17beta-E(2) by electrochemiluminescent immunoassay. Expression of ERs by immunofluorescence and immunohistochemistry. Estrogen receptor, CXCR4, and matrix metalloproteinase 9 gene expression by reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction. SETTING University clinic and academic research laboratory. PATIENT(S) Twelve young fertile women (aged 22-27 years) observed for 6 months, 10 postmenopausal women (aged 52-63 years), and 50 male control subjects (aged 24-61 years). INTERVENTION(S) Blood (35 mL) was collected at each observation point. MAIN OUTCOME MEASURE(S) Correlation between 17beta-E(2) exposure and neoangiogenesis markers. RESULT(S) Estrogen receptors are expressed both in cultured EPCs after prolonged estrogen stimulation and in circulating EPCs, such as in CD34+ cells in bone marrow. The number of ER-beta+ and CXCR4+ EPCs increased during the ovulatory phase, and this increase is probably mediated by ER-beta and matrix metalloproteinase 9. CONCLUSION(S) Estrogens play a key role in neoangiogenesis processes, such as endometrium recovery, and this mechanism involves both a central action (on bone marrow) and a cytokine-mediated peripheral one (on endothelium).
Genomics data | 2014
Lisa Perilli; Silvia Pizzini; Andrea Bisognin; Susanna Mandruzzato; Marta Biasiolo; Arianna Facciolli; Elisabetta Rossi; Giovanni Esposito; Massimo Rugge; Pierluigi Pilati; Simone Mocellin; Donato Nitti; Stefania Bortoluzzi; Paola Zanovello
Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colorectal cancer has mainly been demonstrated in primary tumors. The miRNA expression profiles in 78 samples from 46 patients were analyzed to identify changes in miRNA expression level among normal colon mucosa, primary tumor and liver metastasis samples. Using this dataset, we describe the interplay of miRNA groups in regulating pathways that are important for tumor development. Here we describe in details the contents and quality controls for the miRNA expression and clinical data associated with the study published by Pizzini and colleagues in the BMC Genomics in 2013 (Pizzini et al., 2013). Data are deposited in GEO database as GSE35834 series.
Oncotarget | 2014
Lisa Perilli; Caterina Vicentini; Marco Agostini; Silvia Pizzini; Marco Pizzi; Edoardo D’Angelo; Stefania Bortoluzzi; Susanna Mandruzzato; Enzo Mammano; Massimo Rugge; Donato Nitti; Aldo Scarpa; Matteo Fassan; Paola Zanovello
European Archives of Oto-rhino-laryngology | 2013
Giancarlo Ottaviano; Daniela Zuccarello; Massimo Menegazzo; Lisa Perilli; Gino Marioni; Anna Chiara Frigo; Alberto Staffieri; Carlo Foresta
Molecular Cancer | 2018
Angela Grassi; Lisa Perilli; Laura Albertoni; Sofia Tessarollo; Claudia Mescoli; Emanuele Damiano Luca Urso; Matteo Fassan; Massimo Rugge; Paola Zanovello