Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa R. Leon is active.

Publication


Featured researches published by Lisa R. Leon.


Journal of Applied Physiology | 2010

Heat Stroke: Role of the Systemic Inflammatory Response

Lisa R. Leon; Bryan G. Helwig

Heat stroke is a life-threatening illness that is characterized clinically by central nervous system dysfunction, including delirium, seizures, or coma and severe hyperthermia. Rapid cooling and support of multi-organ function are the most effective clinical treatments, but many patients experience permanent neurological impairments or death despite these efforts. The highest incidence of heat stroke deaths occurs in very young or elderly individuals during summer heat waves, with ∼ 200 deaths per year in the United States. Young, fit individuals may experience exertional heat stroke while performing strenuous physical activity in temperate or hot climates. Factors that predispose to heat stroke collapse include pre-existing illness, cardiovascular disease, drug use, and poor fitness level. For decades the magnitude of the hyperthermic response in heat stroke patients was considered the primary determinant of morbidity and mortality. However, recent clinical and experimental evidence suggests a complex interplay between heat cytotoxicity, coagulation, and the systemic inflammatory response syndrome (SIRS) that ensues following damage to the gut and other organs. Cytokines are immune modulators that have been implicated as adverse mediators of the SIRS, but recent data suggest a protective role for these proteins in the resolution of inflammation. Multi-organ system failure is the ultimate cause of mortality, and recent experimental data indicate that current clinical markers of heat stroke recovery may not adequately reflect heat stroke recovery in all cases. Currently heat stroke is a more preventable than treatable condition, and novel therapeutics are required to improve patient outcome.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice

Lisa R. Leon; Matthew J. Kluger

Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have been implicated as key mediators in inflammation, morbidity, and mortality associated with sepsis. We examined the role of IL-6 and TNF-α signaling on hypothermia, fever, cachexia, anorexia, and survival during sepsis induced by cecal ligation and puncture (CLP) in male and female gene knockout mice. Male wild-type mice developed an initial hypothermia and subsequent fever during sepsis. Male IL-6 knockout mice did not develop fever; rather, they maintained a profound hypothermia during sepsis. Male TNF p55/p75 receptor (TNFR) knockout mice had attenuated hypothermia, but developed a virtually identical fever as wild-type mice. Cachexia did not differ between male wild-type and IL-6 or TNFR knockout mice, whereas anorexia was prolonged in IL-6 knockout mice. Due to the rapid lethality of sepsis in female mice, survival was the only variable we were able to statistically compare among female genotypes. Female wild-type mice had significantly decreased survival compared with male wild-type mice. Survival was significantly enhanced in male and female TNFR knockout mice compared with their wild-type controls. Lack of IL-6 did not affect male or female lethality. These data support the hypothesis that IL-6 is a key mediator of fever and food intake, whereas TNF is responsible for the initial hypothermia and lethality of sepsis in both sexes of mice. The enhanced lethality of CLP-treated female mice supports a role for sex steroids during sepsis.Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) have been implicated as key mediators in inflammation, morbidity, and mortality associated with sepsis. We examined the role of IL-6 and TNF-alpha signaling on hypothermia, fever, cachexia, anorexia, and survival during sepsis induced by cecal ligation and puncture (CLP) in male and female gene knockout mice. Male wild-type mice developed an initial hypothermia and subsequent fever during sepsis. Male IL-6 knockout mice did not develop fever; rather, they maintained a profound hypothermia during sepsis. Male TNF p55/p75 receptor (TNFR) knockout mice had attenuated hypothermia, but developed a virtually identical fever as wild-type mice. Cachexia did not differ between male wild-type and IL-6 or TNFR knockout mice, whereas anorexia was prolonged in IL-6 knockout mice. Due to the rapid lethality of sepsis in female mice, survival was the only variable we were able to statistically compare among female genotypes. Female wild-type mice had significantly decreased survival compared with male wild-type mice. Survival was significantly enhanced in male and female TNFR knockout mice compared with their wild-type controls. Lack of IL-6 did not affect male or female lethality. These data support the hypothesis that IL-6 is a key mediator of fever and food intake, whereas TNF is responsible for the initial hypothermia and lethality of sepsis in both sexes of mice. The enhanced lethality of CLP-treated female mice supports a role for sex steroids during sepsis.


Current Sports Medicine Reports | 2010

American college of sports medicine Roundtable on exertional heat stroke - Return to duty/return to play: Conference proceedings

Francis G. O'Connor; Douglas J. Casa; Michael F. Bergeron; Rebecca Carter; Patricia A. Deuster; Yuval Heled; John Kark; Lisa R. Leon; Brendon P. McDermott; Karen O'Brien; William O. Roberts; Michael N. Sawka

On October 22-23, 2008, an ACSM Roundtable was convened at the Uniformed Services University (Bethesda, MD) to discuss return-to-play or return-to-duty for people who have experienced exertional heat illness (EHI) and to develop consensus-based recommendations. The conference assembled experts from the civilian sports medicine community and the Department of Defense to discuss relevant EHI issues, such as potential long-term consequences, the concept of thermotolerance, and the role of thermal tolerance testing in return-to-play decisions. Although the group was unable to move forward with new consensus recommendations, they clearly documented critical clinical concerns and scientific questions, including the following: 1) no uniform core definitions of EHI; 2) limited validated criteria to assess recovery from exertional heat stroke (EHS); and 3) inadequate ability to predict who may be predisposed to a subsequent heat injury after EHS. Areas of potential future research are identified.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Thermoregulatory, behavioral, and metabolic responses to heatstroke in a conscious mouse model

Lisa R. Leon; Christopher J. Gordon; Bryan G. Helwig; Dennis Rufolo; Michael D. Blaha

The typical core temperature (T(c)) profile displayed during heatstroke (HS) recovery consists of initial hypothermia followed by delayed hyperthermia. Anecdotal observations led to the conclusion that these T(c) responses represent thermoregulatory dysfunction as a result of brain damage. We hypothesized that these T(c) responses are mediated by a change in the temperature setpoint. T(c) (+/- 0.1 degrees C; radiotelemetry) of male C57BL/6J mice was monitored while they were housed in a temperature gradient with ambient temperature (T(a)) range of 20-39 degrees C to monitor behaviorally selected T(a) (T(s)) or an indirect calorimeter (T(a) = 25 degrees C) to monitor metabolism (V(O(2))) and calculate respiratory exchange ratio (RER). Responses to mild and severe HS (thermal area 249.6 +/- 18.9 vs. 299.4 +/- 19.3 degrees C.min, respectively) were examined through 48 h of recovery. An initial hypothermia following mild HS was associated with warm T(s) (approximately 32 degrees C), approximately 35% V(O(2)) decrease, and RER approximately 0.71 that indicated reliance on fatty acid oxidation. After 24 h, mild HS mice developed hyperthermia associated with warm T(s) (approximately 32 degrees C), approximately 20% V(O(2)) increase, and RER approximately 0.85. Severe HS mice appeared poikilothermic-like in the temperature gradient with T(c) similar to T(s) (approximately 20 degrees C), and these mice failed to recover from hypothermia and develop delayed hyperthermia. Cellular damage (hematoxylin and eosin staining) was undetectable in the hypothalamus or other brain regions in severe HS mice. Overall, decreases and increases in T(c) were associated with behavioral and autonomic thermoeffectors that suggest HS elicits anapyrexia and fever, respectively. Taken together, T(c) responses of mild and severe HS mice suggest a need for reinterpretation of the mechanisms of thermoregulatory control during recovery.


Physiological Genomics | 2011

Tissue and circulating expression of IL-1 family members following heat stroke

Bryan G. Helwig; Lisa R. Leon

Interleukin-1 (IL-1) is thought to have a significant role in the pathophysiology of heat stroke (HS), although little is known regarding the actions or expression patterns of the IL-1 family. This study tested the hypotheses that following HS IL-1 family gene expression is dynamic, while loss of IL-1 signaling enhances recovery. IL-1 family expression was determined in plasma, spleen, and liver from C57BL/6J mice (n=24 control, n=20 HS) at maximum core temperature (Tc,Max), hypothermia, and 24 h post-HS (24 h). Soluble IL-1 receptor subtype I (sIL-1RI) protein expression peaked at 24 h (14,659.01±2,016.28 pg/ml, P<0.05), while sIL-1RII peaked at hypothermia (19,099.30±1,177.07 pg/ml). IL-1α gene expression in the spleen (ninefold) and liver (fourfold) along with IL-1RI (threefold spleen and fivefold liver) were maximal at hypothermia. Spleen IL-1β gene expression peaked at Tc,Max (fourfold) but at hypothermia (fourfold) in liver. Gene expression of the IL-1 family member IL-18 peaked (2.5-fold) at Tc,Max but was similar at all other time points. Subsequent studies revealed that despite accruing a greater heating area (298±16 vs. 247±13°C·min, P<0.05), IL-1RI knockout (KO) mice (n=14) showed an attenuated hypothermia depth (28.5±0.2 vs. 27.3±0.5°C, P<0.05) and duration (675±82 vs. 1,283±390 min, P<0.05) with a higher 24 h Tc (36.9 vs. 34.1°C, P<0.05) compared with C57BL/6J mice (n=8). The current results demonstrate that following HS IL-1 family gene expression is altered and IL-1RI KO mice display Tc responses consistent with a more rapid recovery.


BMC Genomics | 2014

Patterns of Gene Expression Associated with Recovery and Injury in Heat-stressed Rats

Jonathan D. Stallings; Danielle L Ippolito; Vineet Rakesh; Christine E. Baer; William E. Dennis; Bryan G. Helwig; David Jackson; Lisa R. Leon; John Lewis; Jaques Reifman

BackgroundThe in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model.ResultsWe heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response.ConclusionsPathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.


Journal of Applied Physiology | 2014

Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model

Carrie M. Quinn; Rocio M. Duran; Gerald N. Audet; Nisha Charkoudian; Lisa R. Leon

Multiorgan failure is a catastrophic consequence of heat stroke (HS) and considered the underlying etiology of mortality. Identifying novel biomarkers capable of predicting the extent of HS-induced organ damage will enhance point-of-care triage and treatment. Conscious male F344 rats (n = 32) were radiotelemetered for continuous core temperature (Tc), heart rate, and arterial pressure measurement. Twenty-two animals were exposed to ambient temperature of 37°C to a maximum Tc of 41.9 ± 0.1°C. Rats were euthanized at 24 h of recovery for analysis of plasma biomarkers [cardiac troponin I (cTnI), blood urea nitrogen (BUN), alanine aminotransferase (ALT), albumin, glucose] and histology. Tc profiles observed during recovery stratified HS severity into Mild, Moderate, and Severe. Eleven (50%) animals exhibited an acute compensatory hemodynamic response to heat exposure and a monophasic Tc profile consisting of sustained hyperthermia (∼1°C). Five (23%) rats displayed hemodynamic challenge and a biphasic Tc profile with rapid return to baseline followed by rebound hyperthermia. All biomarkers were significantly altered from control values (P < 0.05). Four (18%) animals exhibited significant hemodynamic compromise during heat and a triphasic profile characterized by rapid cooling to baseline Tc, rebound hyperthermia, and subsequent hypothermia (∼35°C) through 24 h. cTnI showed a 40-fold increase over CON (P < 0.001) and correlated with BUN (r = 0.912) consistent with cardiorenal failure. Hypoglycemia correlated with ALT (r = 0.824) suggestive of liver dysfunction. Histology demonstrated myocardial infarction, renal tubular necrosis, and acute liver necrosis. Two (9%) animals succumbed during HS recovery. This study identified novel biomarkers that predict HS severity and organ damage during acute recovery that could provide clinical significance for identifying key biomarkers of HS pathogenesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Increased cytokine and chemokine gene expression in the CNS of mice during heat stroke recovery

Joseph C. Biedenkapp; Lisa R. Leon

Heat stroke (HS) is characterized by a systemic inflammatory response syndrome (SIRS) consisting of profound core temperature (Tc) changes in mice. Encephalopathy is common at HS collapse, but inflammatory changes occurring in the brain during the SIRS remain unidentified. We determined the association between inflammatory gene expression changes in the brain with Tc disturbances during HS recovery in mice. Gene expression changes of heat shock protein (HSP)72, heme oxygenase (hmox1), cytokines (IL-1β, IL-6, TNF-α), cyclooxygenase enzymes (COX-1, COX-2), chemokines (MCP-1, MIP-1α, MIP-1β, CX3CR1), and glia activation markers (CD14, aif1, vimentin) were examined in the hypothalamus (HY) and hippocampus (HC) of control (Tc ∼ 36.0°C) and HS mice at Tc,Max (42.7°C), hypothermia depth (HD; 29.3 ± 0.4°C), and fever (37.8 ± 0.3°C). HSP72 (HY<HC) and IL-1β (HY only) were the only genes that showed increased expression at Tc,Max. HSP72 (HY < HC), hmox1 (HY < HC), cytokine (HY = HC), and chemokine (HY = HC) expression was highest at HD and similar to controls during fever. COX-1 expression was unaffected by HS, whereas HD was associated with approximately threefold increase in COX-2 expression (HY only). COX-2 expression was not increased during fever and indomethacin (COX inhibitor) had no effect on this Tc response indicating fever is regulated by other inflammatory pathways. CD14, aif1, and vimentin activation at HD coincided with maximal cytokine and chemokine expression suggesting glia cells are a possible source of brain cytokines and chemokines during HS recovery. The inflammatory gene expression changes during HS recovery suggest cytokines and/or chemokines may be initiating development or rewarming from hypothermia, whereas fever pathway(s) remain to be elucidated.


PLOS ONE | 2013

Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

Maria Rodriguez-Fernandez; Benyamin Grosman; Theresa Yuraszeck; Bryan G. Helwig; Lisa R. Leon; Francis J. Doyle

Heat stroke (HS) is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS). The observation that pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF) receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events) in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation) and proteomic (circulating cytokines and receptors) data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico).


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Attenuated thermoregulatory, metabolic, and liver acute phase protein response to heat stroke in TNF receptor knockout mice

Lisa R. Leon; Shauna M. Dineen; Michael D. Blaha; Maria Rodriguez-Fernandez; David C. Clarke

Tumor necrosis factor (TNF) is considered an adverse mediator of heat stroke (HS) based on clinical studies showing high serum levels. However, soluble TNF receptors (sTNFR; TNF antagonists) were higher in survivors than nonsurvivors, and TNFR knockout (KO) mice showed a trend toward increased mortality, suggesting TNF has protective actions for recovery. We delineated TNF actions in HS by comparing thermoregulatory, metabolic, and inflammatory responses between B6129F2 (wild type, WT) and TNFR KO mice. Before heat exposure, TNFR KO mice showed ~0.4°C lower core temperature (T(c); radiotelemetry), ~10% lower metabolic rate (M(r); indirect calorimetry), and reduced plasma interleukin (IL)-1α and sIL-1RI than WT mice. KO mice selected warmer temperatures than WT mice in a gradient but remained hypothermic. In the calorimeter, both genotypes showed a similar heating rate, but TNFR KO maintained lower T(c) and M(r) than WT mice for a given heat exposure duration and required ~30 min longer to reach maximum T(c) (42.4°C). Plasma IL-6 increased at ~3 h of recovery in both genotypes, but KO mice showed a more robust sIL-6R response. Higher sIL-6R in the KO mice was associated with delayed liver p-STAT3 protein expression and attenuated serum amyloid A3 (SAA3) gene expression, suggesting the acute phase response (APR) was attenuated in these mice. Our data suggest that the absence of TNF signaling induced a regulated hypothermic state in the KO mice, TNF-IL-1 interactions may modulate T(c) and M(r) during homeostatic conditions, and TNF modulates the APR during HS recovery through interactions with the liver IL-6-STAT3 pathway of SAA3 regulation.

Collaboration


Dive into the Lisa R. Leon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Blaha

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Gerald N. Audet

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Shauna M. Dineen

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

David A. DuBose

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry D. Walker

United States Army Research Institute of Environmental Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge