Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa R. W. Plano is active.

Publication


Featured researches published by Lisa R. W. Plano.


Journal of Ethnopharmacology | 2008

Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus

Cassandra L. Quave; Lisa R. W. Plano; Traci Pantuso; Bradley C. Bennett

AIM OF STUDY One-third of botanical remedies from southern Italy are used to treat skin and soft tissue infection (SSTI). Staphylococcus aureus, a common cause of SSTI, has generated increasing concern due to drug resistance. Many plants possess antimicrobial agents and provide effective remedies for SSTI. Our aim was to investigate plants from different ethnobotanical usage groups for inhibition of growth and biofilms in methicillin-resistant Staphylococcus aureus (MRSA). MATERIALS AND METHODS Three groups were assessed: plant remedies for SSTI, plant remedies not involving the skin, and plants with no ethnomedical application. We screened 168 extracts, representing 104 botanical species, for activity against MRSA (ATCC 33593). We employed broth dilution methods to determine the MIC after 18 h growth using an optical density (OD 600 nm) reading. Anti-biofilm effects were assessed by growing biofilms for 40 h, then fixing and staining with crystal violet. After washing, 10% Tween 80 was added and OD 570 nm readings were taken. RESULTS Extracts from 10 plants exhibited an IC50<or=32 microg/ml for biofilm inhibition: Lonicera alpigena, Castanea sativa, Juglans regia, Ballota nigra, Rosmarinus officinalis, Leopoldia comosa, Malva sylvestris, Cyclamen hederifolium, Rosa canina, and Rubus ulmifolius. Limited bacteriostatic activity was evident. CONCLUSION This study has demonstrated that the anti-biofilm activity of medicinal plants used for SSTI is significantly greater than plants without any ethnomedical applications.


Applied and Environmental Microbiology | 2010

Presence of Pathogens and Indicator Microbes at a Non-Point Source Subtropical Recreational Marine Beach

Amir M. Abdelzaher; Mary E. Wright; Cristina Ortega; Helena M. Solo-Gabriele; Gary W. Miller; Samir M. Elmir; Xihui Newman; Peter Shih; J. Alfredo Bonilla; Tonya D. Bonilla; Carol J. Palmer; Troy M. Scott; Jerzy Lukasik; Valerie J. Harwood; Shannon McQuaig; Chris Sinigalliano; Maribeth L. Gidley; Lisa R. W. Plano; Xiaofang Zhu; John D. Wang; Lora E. Fleming

ABSTRACT Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution.


PLOS ONE | 2013

Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection

Irena Pastar; Aron G. Nusbaum; Joel Gil; Shailee Patel; Juan Chen; Jose Valdes; Olivera Stojadinovic; Lisa R. W. Plano; Marjana Tomic-Canic; Stephen C. Davis

Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections.


The Journal of Infectious Diseases | 2011

Influenza Virus Primes Mice for Pneumonia From Staphylococcus aureus

Amy R. Iverson; Kelli L. Boyd; Julie L. McAuley; Lisa R. W. Plano; Mark E. Hart; Jonathan A. McCullers

Superinfections from Staphylococcus aureus following influenza are an increasing concern. We assessed several laboratory and clinical strains in a mouse coinfection model with influenza virus. A methicillin-resistant USA300 clone and several recent clinical strains from patients with necrotizing pneumonia caused high mortality following influenza virus infection in mice. Both viral and bacterial lung titers were enhanced during coinfections compared with single infections. However, differences in titers did not correspond with differences in disease outcomes in a comparison of superinfections from a highly pathogenic strain with those from a poorly pathogenic strain. These strains did differ, however, in expression of Panton-Valentine leukocidin and in the degree of inflammatory lung damage each engendered. The viral cytotoxin PB1-F2 contributed to the negative outcomes. These data suggest that additional study of specific bacterial virulence factors involved in the pathogenesis of inflammation and lung damage during coinfections is needed.


International Journal of Epidemiology | 2010

The BEACHES Study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters

Jay M. Fleisher; Lora E. Fleming; Helena M. Solo-Gabriele; Jonathan Kish; Christopher D. Sinigalliano; Lisa R. W. Plano; Samir M. Elmir; John D. Wang; Kelly Withum; Tomoyuki Shibata; Maribeth L. Gidley; Amir M. Abdelzaher; Guoqing He; Cristina Ortega; Xiaofang Zhu; Mary E. Wright; Julie Hollenbeck; Lorraine C. Backer

BACKGROUND Microbial water-quality indicators, in high concentrations in sewage, are used to determine whether water is safe for recreational purposes. Recently, the use of these indicators to regulate recreational water bodies, particularly in sub/tropical recreational marine waters without known sources of sewage, has been questioned. The objectives of this study were to evaluate the risk to humans from exposure to subtropical recreational marine waters with no known point source, and the possible relationship between microbe densities and reported symptoms in human subjects with random-exposure assignment and intensive individual microbial monitoring in this environment. METHODS A total of 1303 adult regular bathers were randomly assigned to bather and non-bather groups, with subsequent follow-up for reported illness, in conjunction with extensive environmental sampling of indicator organisms (enterococci). RESULTS Bathers were 1.76 times more likely to report gastrointestinal illness [95% confidence interval (CI) 0.94-3.30; P = 0.07]; 4.46 times more likely to report acute febrile respiratory illness (95% CI 0.99-20.90; P = 0.051) and 5.91 times more likely to report a skin illness (95% CI 2.76-12.63; P < 0.0001) relative to non-bathers. Evidence of a dose-response relationship was found between skin illnesses and increasing enterococci exposure among bathers [1.46 times (95% CI 0.97-2.21; P = 0.07) per increasing log(10) unit of enterococci exposure], but not for gastrointestinal or respiratory illnesses. CONCLUSIONS This study indicated that bathers may be at increased risk of several illnesses relative to non-bathers, even in the absence of any known source of domestic sewage impacting the recreational marine waters. There was no dose-response relationship between gastroenteritis and increasing exposure to enterococci, even though many current water-monitoring standards use gastroenteritis as the major outcome illness.


Water Research | 2010

Traditional and molecular analyses for fecal indicator bacteria in non-point source subtropical recreational marine waters.

Christopher D. Sinigalliano; Jay M. Fleisher; Maribeth L. Gidley; Helena M. Solo-Gabriele; Tomoyuki Shibata; Lisa R. W. Plano; Samir M. Elmir; David Wanless; Jakub Bartkowiak; Rene Boiteau; Kelly Withum; Amir M. Abdelzaher; Guoqing He; Cristina Ortega; Xiaofang Zhu; Mary E. Wright; Jonathan Kish; Julie Hollenbeck; Troy M. Scott; Lorraine C. Backer; Lora E. Fleming

The use of enterococci as the primary fecal indicator bacteria (FIB) for the determination of recreational water safety has been questioned, particularly in sub/tropical marine waters without known point sources of sewage. Alternative FIB (such as the Bacteroidales group) and alternative measurement methods (such as rapid molecular testing) have been proposed to supplement or replace current marine water quality testing methods which require culturing enterococci. Moreover, environmental parameters have also been proposed to supplement current monitoring programs. The objective of this study was to evaluate the health risks to humans from exposure to subtropical recreational marine waters with no known point source. The study reported symptoms between one set of human subjects randomly assigned to marine water exposure with intensive environmental monitoring compared with other subjects who did not have exposure. In addition, illness outcomes among the exposed bathers were compared to levels of traditional and alternative FIB (as measured by culture-based and molecular-based methods), and compared to easily measured environmental parameters. Results demonstrated an increase in self-reported gastrointestinal, respiratory and skin illnesses among bathers vs. non-bathers. Among the bathers, a dose-response relationship by logistic regression modeling was observed for skin illness, where illness was positively related to enterococci enumeration by membrane filtration (odds ratio = 1.46 [95% confidence interval = 0.97-2.21] per increasing log10 unit of enterococci exposure) and positively related to 24 h antecedent rain fall (1.04 [1.01-1.07] per increasing millimeters of rain). Acute febrile respiratory illness was inversely related to water temperature (0.74 [0.56-0.98] per increasing degree of water temperature). There were no significant dose-response relationships between report of human illness and any of the other FIB or environmental measures. Therefore, for non-point source subtropical recreational marine waters, this study suggests that humans may be at increased risk of reported illness, and that the currently recommended and investigational FIB may not track gastrointestinal illness under these conditions; the relationship between other human illness and environmental measures is less clear.


Journal of Applied Microbiology | 2011

Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site.

A.H. Shah; Amir M. Abdelzaher; Matthew C. Phillips; R. Hernandez; Helena M. Solo-Gabriele; Jonathan Kish; G. Scorzetti; J.W. Fell; M.R. Diaz; Troy M. Scott; Jerzy Lukasik; Valerie J. Harwood; Shannon McQuaig; Christopher D. Sinigalliano; Maribeth L. Gidley; David Wanless; Arba L. Ager; J. Lui; Jill R. Stewart; Lisa R. W. Plano; Lora E. Fleming

Aims:  Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non‐point source subtropical marine beach.


Infection and Immunity | 2006

Measurement of Effector Protein Injection by Type III and Type IV Secretion Systems by Using a 13-Residue Phosphorylatable Glycogen Synthase Kinase Tag

Julie Torruellas Garcia; Franco Ferracci; Michael W. Jackson; Sabrina S. Joseph; Isabelle Pattis; Lisa R. W. Plano; Wolfgang Fischer; Gregory V. Plano

ABSTRACT Numerous bacterial pathogens use type III secretion systems (T3SSs) or T4SSs to inject or translocate virulence proteins into eukaryotic cells. Several different reporter systems have been developed to measure the translocation of these proteins. In this study, a peptide tag-based reporter system was developed and used to monitor the injection of T3S and T4S substrates. The glycogen synthase kinase (GSK) tag is a 13-residue phosphorylatable peptide tag derived from the human GSK-3β kinase. Translocation of a GSK-tagged protein into a eukaryotic cell results in host cell protein kinase-dependent phosphorylation of the tag, which can be detected with phosphospecific GSK-3β antibodies. A series of expression plasmids encoding Yop-GSK fusion proteins were constructed to evaluate the ability of the GSK tag to measure the injection of Yops by the Yersinia pestis T3SS. GSK-tagged YopE, YopH, LcrQ, YopK, YopN, and YopJ were efficiently phosphorylated when translocated into HeLa cells. Similarly, the injection of GSK-CagA by the Helicobacter pylori T4SS into different cell types was measured via phosphorylation of the GSK tag. The GSK tag provides a simple method to monitor the translocation of T3S and T4S substrates.


BMC Microbiology | 2011

Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters

Lisa R. W. Plano; Anna C. Garza; Tomoyuki Shibata; Samir M. Elmir; Jonathan Kish; Christopher D. Sinigalliano; Maribeth L. Gidley; Gary W. Miller; Kelly Withum; Lora E. Fleming; Helena M. Solo-Gabriele

BackgroundStaphylococcus aureus including methicillin resistant S. aureus, MRSA, are human colonizing bacteria that commonly cause opportunistic infections primarily involving the skin in otherwise healthy individuals. These infections have been linked to close contact and sharing of common facilities such as locker rooms, schools and prisons Waterborne exposure and transmission routes have not been traditionally associated with S. aureus infections. Coastal marine waters and beaches used for recreation are potential locations for the combination of high numbers of people with close contact and therefore could contribute to the exposure to and infection by these organisms. The primary aim of this study was to evaluate the amount and characteristics of the shedding of methicillin sensitive S. aureus, MSSA and MRSA by human bathers in marine waters.ResultsNasal cultures were collected from bathers, and water samples were collected from two sets of pools designed to isolate and quantify MSSA and MRSA shed by adults and toddlers during exposure to marine water. A combination of selective growth media and biochemical and polymerase chain reaction analysis was used to identify and perform limited characterization of the S. aureus isolated from the water and the participants. Twelve of 15 MRSA isolates collected from the water had identical genetic characteristics as the organisms isolated from the participants exposed to that water while the remaining 3 MRSA were without matching nasal isolates from participants. The amount of S. aureus shed per person corresponded to 105 to 106 CFU per person per 15-minute bathing period, with 15 to 20% of this quantity testing positive for MRSA.ConclusionsThis is the first report of a comparison of human colonizing organisms with bacteria from human exposed marine water attempting to confirm that participants shed their own colonizing MSSA and MRSA into their bathing milieu. These findings clearly demonstrate that adults and toddlers shed their colonizing organisms into marine waters and therefore can be sources of potentially pathogenic S. aureus and MRSA in recreational marine waters. Additional research is needed to evaluate recreational beaches and marine waters as potential exposure and transmission pathways for MRSA.


Water Research | 2012

Spatial and temporal variation in indicator microbe sampling is influential in beach management decisions.

Amber A. Enns; Laura J. Vogel; Amir M. Abdelzaher; Helena M. Solo-Gabriele; Lisa R. W. Plano; Maribeth L. Gidley; Matthew C. Phillips; James S. Klaus; Alan M. Piggot; Zhixuan Feng; Ad Reniers; Brian K. Haus; Samir M. Elmir; Yifan Zhang; Nasly H. Jimenez; Noha Abdel-Mottaleb; Michael E. Schoor; Alexis Brown; Sumbul Q. Khan; Adrienne S. Dameron; Norma C. Salazar; Lora E. Fleming

Fecal indicator microbes, such as enterococci, are often used to assess potential health risks caused by pathogens at recreational beaches. Microbe levels often vary based on collection time and sampling location. The primary goal of this study was to assess how spatial and temporal variations in sample collection, which are driven by environmental parameters, impact enterococci measurements and beach management decisions. A secondary goal was to assess whether enterococci levels can be predictive of the presence of Staphylococcus aureus, a skin pathogen. Over a ten-day period, hydrometeorologic data, hydrodynamic data, bather densities, enterococci levels, and S. aureus levels including methicillin-resistant S. aureus (MRSA) were measured in both water and sand. Samples were collected hourly for both water and sediment at knee-depth, and every 6 h for water at waist-depth, supratidal sand, intertidal sand, and waterline sand. Results showed that solar radiation, tides, and rainfall events were major environmental factors that impacted enterococci levels. S. aureus levels were associated with bathing load, but did not correlate with enterococci levels or any other measured parameters. The results imply that frequencies of advisories depend heavily upon sample collection policies due to spatial and temporal variation of enterococci levels in response to environmental parameters. Thus, sampling at different times of the day and at different depths can significantly impact beach management decisions. Additionally, the lack of correlation between S. aureus and enterococci suggests that use of fecal indicators may not accurately assess risk for some pathogens.

Collaboration


Dive into the Lisa R. W. Plano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Sinigalliano

Atlantic Oceanographic and Meteorological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoyuki Shibata

Northern Illinois University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge