Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa S. Thomas is active.

Publication


Featured researches published by Lisa S. Thomas.


Journal of Immunology | 2001

Decreased Expression of Toll-Like Receptor-4 and MD-2 Correlates with Intestinal Epithelial Cell Protection Against Dysregulated Proinflammatory Gene Expression in Response to Bacterial Lipopolysaccharide

Maria T. Abreu; Puja Vora; Emmanuelle Faure; Lisa S. Thomas; Elizabeth T. Arnold; Moshe Arditi

The lumenal surface of the colonic epithelium is continually exposed to Gram-negative commensal bacteria and LPS. Recognition of LPS by Toll-like receptor (TLR)-4 results in proinflammatory gene expression in diverse cell types. Normally, however, commensal bacteria and their components do not elicit an inflammatory response from intestinal epithelial cells (IEC). The aim of this study is to understand the molecular mechanisms by which IEC limit chronic activation in the presence of LPS. Three IEC lines (Caco-2, T84, HT-29) were tested for their ability to activate an NF-κB reporter gene in response to purified, protein-free LPS. No IEC line responded to LPS, whereas human dermal microvessel endothelial cells (HMEC) did respond to LPS. IEC responded vigorously to IL-1β in this assay, demonstrating that the IL-1 receptor signaling pathway shared by TLRs was intact. To determine the reason for LPS hyporesponsiveness in IEC, we examined the expression of TLR4 and MD-2, a critical coreceptor for TLR4 signaling. IEC expressed low levels of TLR4 compared with HMEC and none expressed MD-2. To determine whether the low level of TLR4 expression or absent MD-2 was responsible for the LPS signaling defect in IEC, the TLR4 or MD-2 gene was transiently expressed in IEC lines. Transient transfection of either gene individually was not sufficient to restore LPS signaling, but cotransfection of TLR4 and MD-2 in IEC led to synergistic activation of NF-κB and IL-8 reporter genes in response to LPS. We conclude that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4. The remainder of the intracellular LPS signaling pathway is functionally intact.


Journal of Immunology | 2001

Bacterial Lipopolysaccharide and IFN-γ Induce Toll-Like Receptor 2 and Toll-Like Receptor 4 Expression in Human Endothelial Cells: Role of NF-κB Activation

Emmanuelle Faure; Lisa S. Thomas; Helen Xu; Andrei E. Medvedev; Ozlem Equils; Moshe Arditi

Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-α, or IFN-γ induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-γ act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-κB dependent. LPS and IFN-γ also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-α, or IFN-γ. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-γ, in inducing shock associated with Gram-negative sepsis.


Journal of Immunology | 2003

Human Intestinal Epithelial Cells Are Broadly Unresponsive to Toll-Like Receptor 2-Dependent Bacterial Ligands: Implications for Host-Microbial Interactions in the Gut

Gil Y. Melmed; Lisa S. Thomas; Nahee Lee; Samuel Y. Tesfay; Katie Lukasek; Kathrin S. Michelsen; Yuehua Zhou; Bing Hu; Moshe Arditi; Maria T. Abreu

Intestinal epithelial cells (IEC) interact with a high density of Gram-positive bacteria and are active participants in mucosal immune responses. Recognition of Gram-positive organisms by Toll-like receptor (TLR)2 induces proinflammatory gene expression by diverse cells. We hypothesized that IEC are unresponsive to Gram-positive pathogen-associated molecular patterns and sought to characterize the functional responses of IEC to TLR2-specific ligands. Human colonic epithelial cells isolated by laser capture microscopy and IEC lines (Caco-2, T84, HT-29) were analyzed for expression of TLR2, TLR6, TLR1, and Toll inhibitory protein (Tollip) mRNA by RT-PCR and quantitative real-time PCR. Response to Gram-positive bacterial ligands was measured by NF-κB reporter gene activation and IL-8 secretion. TLR2 protein expression was analyzed by immunofluorescence and flow cytometry. Colonic epithelial cells and lamina propria cells from both uninflamed and inflamed tissue demonstrate low expression of TLR2 mRNA compared with THP-1 monocytes. IECs were unresponsive to TLR2 ligands including the staphylococcal-derived Ags phenol soluble modulin, peptidoglycan, and lipotechoic acid and the mycobacterial-derived Ag soluble tuberculosis factor. Transgenic expression of TLR2 and TLR6 restored responsiveness to phenol soluble modulin and peptidoglycan in IEC. In addition to low levels of TLR2 protein expression, IEC also express high levels of the inhibitory molecule Tollip. We conclude that IEC are broadly unresponsive to TLR2 ligands secondary to deficient expression of TLR2 and TLR6. The relative absence of TLR2 protein expression by IEC and high level of Tollip expression may be important in preventing chronic proinflammatory cytokine secretion in response to commensal Gram-positive bacteria in the gut.


Journal of Immunology | 2002

Chlamydial Heat Shock Protein 60 Activates Macrophages and Endothelial Cells Through Toll-Like Receptor 4 and MD2 in a MyD88-Dependent Pathway

Yonca Bulut; Emmanuelle Faure; Lisa S. Thomas; Hisae Karahashi; Kathrin S. Michelsen; Ozlem Equils; Sandra G. Morrison; Richard P. Morrison; Moshe Arditi

Active inflammation and NF-κB activation contribute fundamentally to atherogenesis and plaque disruption. Accumulating evidence has implicated specific infectious agents including Chlamydia pneumoniae in the progression of atherogenesis. Chlamydial heat shock protein 60 (cHSP60) has been implicated in the induction of deleterious immune responses in human chlamydial infections and has been found to colocalize with infiltrating macrophages in atheroma lesions. cHSP60 might stimulate, enhance, and maintain innate immune and inflammatory responses and contribute to atherogenesis. In this study, we investigated the signaling mechanism of cHSP60. Recombinant cHSP60 rapidly activated NF-κB in human microvascular endothelial cells (EC) and in mouse macrophages, and induced human IL-8 promoter activity in EC. The inflammatory effect of cHSP60 was heat labile, thus excluding a role of contaminating LPS, and was blocked by specific anti-chlamydial HSP60 mAb. In human vascular EC which express Toll-like receptor 4 (TLR4) mRNA and protein, nonsignaling TLR4 constructs that act as dominant negative blocked cHSP60-mediated NF-κB activation. Furthermore, an anti-TLR4 Ab abolished cHSP60-induced cellular activation, whereas a control Ab had no effect. In 293 cells, cHSP60-mediated NF-κB activation required both TLR4 and MD2. A dominant-negative MyD88 construct also inhibited cHSP60-induced NF-κB activation. Collectively, our results indicate that cHSP60 is a potent inducer of vascular EC and macrophage inflammatory responses, which are very relevant to atherogenesis. The inflammatory effects are mediated through the innate immune receptor complex TLR4-MD2 and proceeds via the MyD88-dependent signaling pathway. These findings may help elucidate the mechanisms by which chronic asymptomatic chlamydial infection contribute to atherogenesis.


Journal of Immunology | 2001

Cooperation of Toll-Like Receptor 2 and 6 for Cellular Activation by Soluble Tuberculosis Factor and Borrelia burgdorferi Outer Surface Protein A Lipoprotein: Role of Toll-Interacting Protein and IL-1 Receptor Signaling Molecules in Toll-Like Receptor 2 Signaling

Yonca Bulut; Emmanuelle Faure; Lisa S. Thomas; Ozlem Equils; Moshe Arditi

Toll-like receptor 2 (TLR2) and TLR4 play important roles in innate immune responses to various microbial agents. We have previously shown that human dermal endothelial cells (HMEC) express TLR4, but very little TLR2, and respond to LPS, but not to Mycobacterium tuberculosis 19-kDa lipoprotein, unless transfected with TLR2. Here we report that HMEC are unresponsive to several additional biologically relevant TLR2 ligands, including, phenol-soluble modulin (PSM), a complex of three small secreted polypeptides from the skin commensal Staphylococcus epidermidis, soluble tuberculosis factor (STF), and Borrelia burgdorferi outer surface protein A lipoprotein (OspA-L). Expression of TLR2 renders HMEC responsive to all these ligands. We further characterized the signaling pathway in response to STF, OspA-L, and PSM in TLR2-transfected HMEC. The TLR2 signaling pathway for NF-κB trans-activation shares the IL-1R signaling molecules. Dominant negative constructs of TLR2 or TLR6 inhibit the responses of STF and OspA-L as well as PSM in TLR2-transfected HMEC, supporting the concept of functional cooperation between TLR2 and TLR6 for all these TLR2 ligands. Moreover, we show that Toll-interacting protein (Tollip) coimmunoprecipitates with TLR2 and TLR4 using HEK 293 cells, and overexpression of Tollip inhibits NF-κB activation in response to TLR2 and TLR4 signaling. Collectively, these findings suggest that there is functional interaction between TLR2 and TLR6 in the cellular response to STF and OspA-L in addition to S. epidermidis (PSM) Ags, and that engagement of TLR2 triggers a signaling cascade, which shares the IL-1R signaling molecules, similar to the TLR4-LPS signaling cascade. Our data also suggest that Tollip may be an important constituent of both the TLR2 and TLR4 signaling pathways.


Journal of Biological Chemistry | 2002

TLR4 and MD-2 Expression Is Regulated by Immune-mediated Signals in Human Intestinal Epithelial Cells

Maria T. Abreu; Elizabeth T. Arnold; Lisa S. Thomas; Rivkah Gonsky; Yuehua Zhou; Bing Hu; Moshe Arditi

The normal intestinal epithelium is not inflamed despite contact with a high density of commensal bacteria. Intestinal epithelial cells (IEC) express low levels of TLR4 and MD-2 and are lipopolysaccharide (LPS)-unresponsive. We hypothesized that immune-mediated signals regulate the expression of TLR4 and MD-2 in IEC. Expression of TLR4 and MD-2 was examined in normal colonic epithelial cells or intestinal epithelial cell lines. The effect of the cytokines interferon (IFN)-γ, IFN-α, and tumor necrosis factor-α (TNF-α) on TLR4 and MD-2 expression was examined by reverse transcription-PCR and Western blot. NF-κB transcriptional activation and interleukin-8 secretion were used as measures of LPS responsiveness. Native colonic epithelial cells and IEC lines express a low level of TLR4 and MD-2 mRNA. IFN-γ regulates MD-2 expression in both IEC lines, whereas IFN-γ and TNF-α regulate TLR4 mRNA expression in IEC lines. Pre-incubation with IFN-γ and/or TNF-α sensitizes IEC to LPS-dependent interleukin-8 secretion. To examine MD-2 transcriptional regulation, we cloned a 1-kb sequence proximal to the MD-2 gene translational start site. This promoter directed expression of a reporter gene in endothelial cells and IEC. IFN-γ positively regulated MD-2 promoter activity in IEC. Co-expression of a STAT inhibitor, SOCS3, blocked IFN-γ-mediated MD-2 promoter activation. T cell-derived cytokines lead to increased expression of TLR4 and MD-2 and LPS-dependent pro-inflammatory cytokine secretion in IEC. IFN-γ regulates expression of the critical TLR4 co-receptor MD-2 through the Janus tyrosine kinase-STAT pathway. Th1 cytokines may initiate or perpetuate intestinal inflammation by altering toll-like receptor expression and bacterial reactivity.


Journal of Immunology | 2004

β-Defensin-2 Expression Is Regulated by TLR Signaling in Intestinal Epithelial Cells

Puja Vora; Adrienne Youdim; Lisa S. Thomas; Masayuki Fukata; Samuel Y. Tesfay; Katie Lukasek; Kathrin S. Michelsen; Akihiro Wada; Toshiya Hirayama; Moshe Arditi; Maria T. Abreu

The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of β-defensin expression by IEC. The effect of LPS and peptidoglycan on β-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of β-defensin-2 was assessed using promoter-reporter constructs of the human β-defensin-2 gene. LPS and peptidoglycan stimulated β-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-κB or AP-1 site within the β-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of β-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide β-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora.


Gastroenterology | 2008

TL1A (TNFSF15) Regulates the Development of Chronic Colitis by Modulating Both T-Helper 1 and T-Helper 17 Activation

Hidetoshi Takedatsu; Kathrin S. Michelsen; Bo Wei; Carol J. Landers; Lisa S. Thomas; Deepti Dhall; Jonathan Braun; Stephan R. Targan

BACKGROUND & AIMS TL1A is a tumor necrosis factor-like molecule that mediates a strong costimulation of T-helper (T(H)) 1 cells. Expression of TL1A is increased in the mucosa of Crohns disease patients and murine models of ileitis. The aim of this study was to determine the possible role of TL1A in chronic intestinal inflammation. METHODS We used dextran sodium sulfate (DSS)-induced chronic colitis to investigate the effects of TL1A on the development of colitis. The cytokine profile in the gut-associated lymphoid tissue (GALT) was measured. Neutralizing anti-TL1A antibodies were injected intraperitoneally into DSS-induced chronic colitis and G protein alphai2(-/-) T-cell transfer colitis models. Severity of colitis was evaluated by body weight, colon length, histology, and cytokine production. RESULTS DSS-induced chronic colitis was characterized by the infiltration of CD4(+) T cells. TL1A, death receptor 3, interferon (IFN)-gamma, and interleukin (IL)-17 were increased significantly in GALT of DSS-treated mice. TL1A up-regulated both IFN-gamma production from T(H)1 cells and IL-17 production from T(H)17 cells in GALT CD4(+) T cells. Furthermore, IFN-gamma and IL-17 production from CD4(+) T cells, induced by IL-12 and IL-23 respectively, was enhanced synergistically by combination with TL1A. Anti-TL1A antibody prevented chronic colitis and attenuated established colitis by down-regulation of both T(H)1 and T(H)17 activation. CONCLUSIONS Our results reveal that TL1A is an important modulator in the development of chronic mucosal inflammation by enhancing T(H)1 and T(H)17 effector functions. The central role of TL1A represents an attractive, novel therapeutic target for the treatment of Crohns disease patients.


Journal of Immunology | 2007

The T Cell Costimulator TL1A Is Induced by FcγR Signaling in Human Monocytes and Dendritic Cells

John Prehn; Lisa S. Thomas; Carol J. Landers; Qi T. Yu; Kathrin S. Michelsen; Stephan R. Targan

The recently described TL1A/DR3 ligand/receptor pair mediates strong costimulation of Th1 cells. Activation of T and NK cells induces DR3 expression, permitting soluble recombinant TL1A to increase IFN-γ production and proliferation of these cells. Gut T cells and macrophages express TL1A, especially in Crohn’s disease (CD), and there is a strong association between CD and tl1a single nucleotide polymorphisms. Murine studies implicate TL1A in gut inflammation. To determine whether professional T cell-activating cells can express TL1A, fresh blood monocytes and monocyte-derived dendritic cells were stimulated with various activating ligands, including TLR agonists, IFN-γ, and immune complexes. FcγR stimulation strongly induced TL1A mRNA in both cell types, which correlated with the detection of TL1A on the cell surface and in cell culture medium. TLR agonists capable of inducing IL-6 and TNF-α in monocytes and dendritic cells did not induce surface nor soluble TL1A. Furthermore, we demonstrate that TL1A production in monocytes leads to enhancement of T cell responses. The induction of TL1A on APCs via specific pathway stimulation suggests a role for TL1A in Th1 responses to pathogens, and in CD.


Journal of Endotoxin Research | 2003

TLR signaling at the intestinal epithelial interface.

Maria T. Abreu; Lisa S. Thomas; Elizabeth T. Arnold; Katie Lukasek; Kathrin S. Michelsen; Moshe Arditi

The intestinal epithelium provides a critical interface between lumenal bacteria and the mucosal immune system. Whereas normal commensal flora do not trigger acute inflammation, pathogenic bacteria trigger a potent inflammatory response. Our studies emanate from the hypothesis that the intestinal epithelium is normally hyporesponsive to commensal pathogen-associated molecular patterns (PAMPs) such as LPS. Our data demonstrate that normal human colonic epithelial cells and lamina propria cells express low levels of TLR4 and its co-receptor MD-2. This expression pattern is mirrored by intestinal epithelial cell (IEC) lines. Co-expression of TLR4 and MD-2 is necessary and sufficient for LPS responsiveness in IEC. Moreover, LPS sensing occurs along the basolateral membrane of polarized IEC in culture. Expression of MD-2 is regulated by IFN-gamma. Cloning of the MD-2 promoter demonstrates that promoter activity is increased by IFN-gamma and blocked by the STAT inhibitor SOCS3. We conclude from our studies that the intestinal epithelium down-regulates expression of TLR4 and MD-2 and is LPS unresponsive. The Th1 cytokine IFN-gamma up-regulates expression of MD-2 in a STAT-dependent fashion. The results of our studies have important implications for understanding human inflammatory bowel diseases.

Collaboration


Dive into the Lisa S. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan R. Targan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moshe Arditi

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carol J. Landers

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Ko

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepti Dhall

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi T. Yu

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge