Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Simonsson is active.

Publication


Featured researches published by Lisa Simonsson.


Journal of Physical Chemistry B | 2008

Determinants for Membrane Fusion Induced by Cholesterol-Modified DNA Zippers

Gudrun Stengel; Lisa Simonsson; Richard A. Campbell; Fredrik Höök

Intracellular membrane fusion is coordinated by membrane-anchored fusion proteins. The cytosolic domains of these proteins form a specific complex that pulls the membranes into close proximity. Although some results indicate that membrane merger can be accomplished solely on the basis of proximity, others emphasize the importance of bilayer stress exerted by transmembrane peptides. In a reductionist approach, we recently introduced a fusion machinery built from cholesterol-modified DNA zippers to mimic fusion protein function. Aiming to further optimize DNA-mediated fusion, we varied in this work length and number of DNA strands and used either one or two cholesterol groups for membrane anchoring of DNA. The results reveal that the use of two cholesterol anchors is essential to prevent cDNA strands from shuttling to the same membrane, which leads to vesicle release instead of membrane merger. A surface coverage of 6-13 DNA strands was a precondition for efficient fusion, whereas fusion was insensitive to DNA length within the tested range. Besides lipid mixing, we also demonstrate DNA-induced content mixing of large unilamellar vesicles composed of the most abundant cellular lipids phosphatidylcholine, phosphatidylethanolamine, cholesterol, and sphingomyelin. Taken together, DNA-mediated fusion emerges as a promising tool for the functionalization of artificial and biological membranes and may help to dissect the functional role of fusion proteins.


Biointerphases | 2008

Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques

Fredrik Höök; Gudrun Stengel; Andreas B. Dahlin; Anders Gunnarsson; Magnus P. Jonsson; Peter Jönsson; Erik Reimhult; Lisa Simonsson; Sofia Svedhem

This article summarizes our most recent contributions to the rapidly growing field of supported lipid assemblies with emphasis on current studies addressing both fundamental and applied aspects of supported lipid bilayer (SLB) and tethered lipid vesicles (TLVs) to be utilized in sensing applications. The new insights obtained from combining the quartz crystal microbalance with dissipation monitoring technique with surface plasmon resonance are described, and we also present recent studies in which nanoplasmonic sensing has been used in studies of SLBs and TLVs. To gain full control over the spatial arrangement of TLVs in both two and three dimensions, we have developed a method for site-selective and sequence-specific sorting of DNA-tagged vesicles to surfaces modified with complementary DNA. The combination of this method with nanoplasmonic sensing formats is covered as well as the possibility of using DNA-modified vesicles for the detection of unlabeled DNA targets on the single-molecule level. Finally, a new method for membrane fusion induced by hybridization of vesicle-anchored DNA is demonstrated, including new results on content mixing obtained with vesicle populations encapsulating short, complementary DNA strands.


Journal of the American Chemical Society | 2011

Continuous Lipid Bilayers Derived from Cell Membranes for Spatial Molecular Manipulation

Lisa Simonsson; Anders Gunnarsson; Patric Wallin; Peter Jönsson; Fredrik Höök

Progress with respect to enrichment and separation of native membrane components in complex lipid environments, such as native cell membranes, has so far been very limited. The reason for the slow progress can be related to the lack of efficient means to generate continuous and laterally fluid supported lipid bilayers (SLBs) made from real cell membranes. We show in this work how the edge of a hydrodynamically driven SLB can be used to induce rupture of adsorbed lipid vesicles of compositions that typically prevent spontaneous SLB formation, such as vesicles made of complex lipid compositions, containing high cholesterol content or being derived from real cell membranes. In particular, upon fusion between the moving edge of a preformed SLB and adsorbed vesicles made directly from 3T3 fibroblast cell membranes, the membrane content of the vesicles was shown to be efficiently transferred to the SLB. The molecular transfer was verified using cholera toxin B subunit (CTB) binding to monosialoganglioside receptors (G(M1) and G(M3)), and the preserved lateral mobility was confirmed by spatial manipulation of the G(M1/M3)-CTB complex using a hydrodynamic flow. Two populations of CTB with markedly different drift velocity could be identified, which from dissociation kinetics data were attributed to CTB bound with different numbers of ganglioside anchors.


ChemPhysChem | 2010

Site-Specific DNA-Controlled Fusion of Single Lipid Vesicles to Supported Lipid Bilayers

Lisa Simonsson; Peter Jönsson; Gudrun Stengel; Fredrik Höök

We investigate the Ca(2+)-triggered fusion of lipid vesicles site-selectively tethered to a DNA-modified supported lipid bilayer array, with the DNA strands designed such that hybridization occurs in a zipperlike fashion. Prior to the addition of Ca(2+), which is observed to induce docking and subsequent fusion (within 200 ms), the vesicles display lateral mobility determined by the number of tethers. Fusion is observed to require around ten DNA strands per vesicle, but does not occur at higher DNA coverage. However, despite the fact that fusion was restricted to occurring for vesicles tethered with around ten DNA strands, there is no correlation between single-vesicle diffusivity and fusogenicity. A possible scenario for the DNA-induced fusion machinery, consistent with these observations, is that prior to Ca(2+)-induced docking, the vesicles diffuse with a small number (2-4) of DNA tethers. Upon addition of Ca(2+), the vesicles dock, presumably due to bridging of lipid head groups. Fusion then occurs under conditions where 10-16 DNA tethers form and rearrange at the rim of the contact region between a docked vesicle and the SLB. The time required for this rearrangement, which may include both DNA hybridization and dehybridization during zipping, is expected to represent the observed docking and fusion time of less than 200 ms.


ACS Nano | 2015

Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.

Björn Agnarsson; Anders Lundgren; Anders Gunnarsson; Michael Rabe; Angelika Kunze; Mokhtar Mapar; Lisa Simonsson; Marta Bally; Vladimir P. Zhdanov; Fredrik Höök

Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 nm gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.


Langmuir | 2012

Formation and Diffusivity Characterization of Supported Lipid Bilayers with Complex Lipid Compositions

Lisa Simonsson; Fredrik Höök

The moving edge of a hydrodynamically manipulated supported lipid bilayer (SLB) can be used to catalyze SLB formation of adsorbed lipid vesicles that do not undergo spontaneous SLB formation upon adsorption on SiO(2). By removing the lipid reservoir of an initially formed SLB, we show how a hydrodynamically moved SLB patch composed of POPC can be used to form isolated SLBs with compositions that to at least 95% represent that of the adsorbed lipid vesicles. The concept is used to investigate the diffusivity of lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (rhodamine-DHPE) in SLBs made from complex lipid compositions, revealing a decrease in diffusivity by a factor of 2 when the cholesterol content was increased from 0% to 50%. We also demonstrate how the concept can be used to induce stationary domains in SLBs containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol (39:21:40 mol %, respectively). Because the method serves as a means to form SLBs with lipid compositions that hamper SLB formation via spontaneous rupture of adsorbed lipid vesicles, it opens up the possibility for new biophysical investigations of SLBs with more nativelike compositions.


Scientific Reports | 2012

A functioning artificial secretory cell

Lisa Simonsson; Michael E. Kurczy; Raphaël Trouillon; Fredrik Höök; Ann-Sofie Cans

We present an amperometric study of content release from individual vesicles in an artificial secretory cell designed with the minimal components required to carry out exocytosis. Here, the membranes of the cell and vesicles are substituted for protein-free giant and large unilamellar vesicles respectively. In replacement of the SNARE-complex, the cell model was equipped with an analog composed of complimentary DNA constructs. The DNA constructs hybridize in a zipper-like fashion to bring about docking of the artificial secretory vesicles and following the addition of Ca2+ artificial exocytosis was completed. Exocytotic events recorded from the artificial cell closely approximate exocytosis in live cells. The results together with simulations of vesicular release demonstrate that the molecular flux in this model is attenuated and we suggest that this is the result of restricted diffusion through a semi-stable fusion pore or a partitioning of the signalling molecule out of the fused vesicle membrane.


Journal of Biomedical Optics | 2007

Monte Carlo simulations of optical human sinusitis diagnostics

Linda Persson; Elias Kristensson; Lisa Simonsson; Sune Svanberg

We investigate the feasibility of using diode laser gas spectroscopy for sinusitis diagnostics. We simulate light propagation using the Monte Carlo concept, as implemented by the Advanced Systems Analysis Program (ASAPTM) software. Simulations and experimental data are compared for a model based on two scattering bodies representing human tissue, with an air gap in-between representing the sinus cavity. Simulations are also performed to investigate the detection geometries used in the experiments, as well as the influence of the optical properties of the scattering bodies. Finally, we explore the possibility of performing imaging measurements of the sinuses. Results suggest that a diagnostic technique complementary to already existing ones could be developed.


Journal of Biomedical Optics | 2007

Monte Carlo simulations related to gas-based optical diagnosis of human sinusitis

Linda Persson; Elias Kristensson; Lisa Simonsson; Sune Svanberg

We investigate the feasibility of using diode laser gas spectroscopy for sinusitis diagnostics. We simulate light propagation using the Monte Carlo concept, as implemented by the Advanced Systems Analysis Program (ASAP) software. Simulations and experimental data are compared for a model based on two scattering bodies representing human tissue, with an air gap in-between representing the sinus cavity. Simulations are also performed to investigate the detection geometries used in the experiments, as well as the influence of the optical properties of the scattering bodies. Finally, we explore the possibility of performing imaging measurements of the sinuses. Results suggest that a diagnostic technique complementary to already existing ones could be developed.


Metamaterials | 2006

Human Sinus Studies using Monte Carlo Simulations and Diode Laser Gas Absorption Spectroscopy

Linda Persson; Elias Kristensson; Lisa Simonsson; Mats R. Andersson; Katarina Svanberg; Sune Svanberg

We demonstrate the possibility of non-intrusive in-vivo human sinus studies by diode laser gas absorption spectroscopy. Molecular oxygen in tissue-like phantoms were investigated in a practical backscattering detection geometry for frontal sinus studies both experimentally and numerically using the Monte Carlo concept, implemented in the Advanced Systems Analysis Program (ASAPtrade) software. Light was launched into and detected from the forehead on a health volunteer. A model representing the frontal sinus measurements was implemented in ASAPtrade and studied. The results from the experiments and the simulations show a good agreement for both the tissue-like phantom measurements and the measurements of the healthy volunteer. Preliminary data from human maxillary sinus measurements are also shown. The results are promising and suggest further development of this technique for sinuses studies.

Collaboration


Dive into the Lisa Simonsson's collaboration.

Top Co-Authors

Avatar

Fredrik Höök

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anders Gunnarsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gudrun Stengel

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sune Svanberg

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ann-Sofie Cans

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Kurczy

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge