Lisa Williamson
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Williamson.
Development | 2010
Scott Crawford; Naoki Shinohara; Tobias Sieberer; Lisa Williamson; Gilu L. George; Jo Hepworth; Dörte Müller; Malgorzata A. Domagalska; Ottoline Leyser
Strigolactones (SLs), or their derivatives, were recently demonstrated to act as endogenous shoot branching inhibitors, but their biosynthesis and mechanism of action are poorly understood. Here we show that the branching phenotype of mutants in the Arabidopsis P450 family member, MAX1, can be fully rescued by strigolactone addition, suggesting that MAX1 acts in SL synthesis. We demonstrate that SLs modulate polar auxin transport to control branching and that both the synthetic SL GR24 and endogenous SL synthesis significantly reduce the basipetal transport of a second branch-regulating hormone, auxin. Importantly, GR24 inhibits branching only in the presence of auxin in the main stem, and enhances competition between two branches on a common stem. Together, these results support two current hypotheses: that auxin moving down the main stem inhibits branch activity by preventing the establishment of auxin transport out of axillary branches; and that SLs act by dampening auxin transport, thus enhancing competition between branches.
Current Biology | 2006
Xiaodong D. Xie; Yibing B. Wang; Lisa Williamson; Geoff H. Holroyd; Cecilia Tagliavia; Erik H. Murchie; Julian C. Theobald; Marc R. Knight; William J. Davies; H. M. Ottoline Leyser; Alistair M. Hetherington
Stomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH. Here we report the characterization of two genes, identified during this screen, which are involved in the guard cell reduced RH signaling pathway. Both genes encode proteins known to be involved in guard cell ABA signaling. OST1 encodes a protein kinase involved in ABA-mediated stomatal closure while ABA2 encodes an enzyme involved in ABA biosynthesis. These results suggest, in contrast to previously published work, that ABA plays a role in the signal transduction pathway connecting decreases in RH to reductions in stomatal aperture. The identification of OST1 as a component required in stomatal RH and ABA signal transduction supports the proposition that guard cell signaling is organized as a network in which some intracellular signaling proteins are shared among different stimuli.
Proceedings of the Royal Society of London B: Biological Sciences | 2002
A. H. Fitter; Lisa Williamson; Birgit Linkohr; Ottoline Leyser
Plant root systems often have complex branching patterns. Models indicate that a complex architecture is only required for the acquisition of immobile resources, such as phosphate; mobile ions, notably nitrate, can be effectively taken up by very restricted root systems. We have tested this prediction using the axr4 mutation of Arabidopsis thaliana, the principal phenotypic effect of which is to reduce the number of lateral roots. Arabidopsis thaliana is not a host for mycorrhizal fungi and so acquires all its nutrients through the root system. In both a pot experiment and a field experiment conducted under natural conditions for A. thaliana, we found that only phosphate, and not nitrate, affected the fitness of the mutant relative to the isogenic wild–type line, Columbia. These results confirm model predictions and have implications both for the evolution of complex root systems and for the design of efficient root systems for crops.
Plant and Soil | 1995
A. H. Fitter; G. K. Self; J. Wolfenden; M. M. I. van Vuuren; T. K. Brown; Lisa Williamson; J. D. Graves; David Robinson
An essential component of an understanding of carbon flux is the quantification of movement through the root carbon pool. Although estimates have been made using radiocarbon, the use of minirhizotrons provides a direct measurement of rates of root birth and death. We have measured root demographic parameters under a semi-natural grassland and for wheat. The grassland was studied along a natural altitudinal gradient in northern England, and similar turf from the site was grown in elevated CO2 in solardomes. Root biomass was enhanced under elevated CO2. Root birth and death rates were both increased to a similar extent in elevated CO2, so that the throughput of carbon was greater than in ambient CO2, but root half-lives were shorter under elevated CO2 only under a Juncus/Nardus sward on a peaty gley soil, and not under a Festuca turf on a brown earth soil. In a separate experiment, wheat also responded to elevated CO2 by increased root production, and there was a marked shift towards surface rooting: root development at a depth of 80–85 cm was both reduced and delayed. In conjunction with published results for trees, these data suggest that the impact of elevated CO2 will be system-dependent, affecting the spatio-temporal pattern of root growth in some ecosystems and the rate of turnover in others. Turrnover is also sensitive to temperature, soil fertility and other environmental variables, all of which are likely to change in tandem with atmospheric CO2 concentrations. Differences in turnover and time and location of rhizodeposition may have a large effect on rates of carbon cycling.
Molecular Plant | 2008
Veronica Ongaro; Katherine Bainbridge; Lisa Williamson; Ottoline Leyser
Studies of apical dominance have benefited greatly from two-branch assays in pea and bean, in which the shoot system is trimmed back to leave only two active cotyledonary axillary branches. In these two-branch shoots, a large body of evidence shows that one actively growing branch is able to inhibit the growth of the other, prompting studies on the nature of the inhibitory signals, which are still poorly understood. Here, we describe the establishment of two-branch assays in Arabidopsis, using consecutive branches on the bolting stem. As with the classical studies in pea and bean, these consecutive branches are able to inhibit one anothers growth. Not only can the upper branch inhibit the lower branch, but also the lower branch can inhibit the upper branch, illustrating the bi-directional action of the inhibitory signals. Using mutants, we show that the inhibition is partially dependent on the MAX pathway and that while the inhibition is clearly transmitted across the stem from the active to the inhibited branch, the vascular connectivity of the two branches is weak, and the MAX pathway is capable of acting unilaterally in the stem.
Plant Journal | 2012
Petra Stirnberg; Shuqing Zhao; Lisa Williamson; Sally Ward; Ottoline Leyser
The transposase-related transcription factor FAR-RED ELONGATED HYPOCOTYL3 (FHY3) promotes seedling de-etiolation in far-red light, which is perceived by phytochrome A (phyA). In this role, FHY3 indirectly mediates the nuclear import of light-activated phyA, which triggers downstream transcriptional responses. Here, we present genetic evidence for additional roles of FHY3 in plant development and growth. New fhy3 alleles were isolated as suppressors of max2-1 (more axillary branching2-1), a strigolactone-insensitive mutant characterised by highly branched shoots. Branching suppression by fhy3, in both wild-type and max2-1 backgrounds, resulted from inhibition of axillary bud outgrowth. Additional roles in axillary meristem initiation were revealed in the revoluta (rev) fhy3 double mutant, with fhy3 enhancing rev mutant defects in axillary shoot meristem formation, as well as in floral meristem maintenance. fhy3 also affected embryonic and floral patterning with low penetrance, and displayed oxidative stress-related phenotypes of retarded leaf growth and of cell death. The fhy3 phenotypes of axillary bud outgrowth suppression and of stress-induced leaf growth retardation both required the AUXIN-RESISTANT1 gene, and are independent of phyA. Consistent with the recent discovery that FHY3 regulates many Arabidopsis promoters, our results suggest much wider roles for FHY3 in growth and development, either in concert with, or beyond, light signalling.
Plant Physiology | 2014
Maaike de Jong; Gilu L. George; Veronica Ongaro; Lisa Williamson; Barbara Willetts; Karin Ljung; Hayley McCulloch; Ottoline Leyser
Limited N supply suppresses shoot branching in Arabidopsis in a process that requires auxin and strigolactone signaling and involves an increase in auxin export from active shoot apices. The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.
Plant Journal | 2010
Yun-Kuan Liang; Xiaodong Xie; Shona E Lindsay; Yi Bing Wang; Josette Masle; Lisa Williamson; Ottoline Leyser; Alistair M. Hetherington
To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency.
Plant Physiology | 2001
Lisa Williamson; Sebastien P.C.P. Ribrioux; A. H. Fitter; H. M. Ottoline Leyser
Plant Journal | 2002
Birgit Linkohr; Lisa Williamson; A. H. Fitter; H. M. Leyser