Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lise Musset is active.

Publication


Featured researches published by Lise Musset.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


PLOS Pathogens | 2010

Identification of a Mutant PfCRT-Mediated Chloroquine Tolerance Phenotype in Plasmodium falciparum

Stephanie G. Valderramos; Juan-Carlos Valderramos; Lise Musset; Lisa A. Purcell; Odile Mercereau-Puijalon; Eric Legrand; David A. Fidock

Mutant forms of the Plasmodium falciparum transporter PfCRT constitute the key determinant of parasite resistance to chloroquine (CQ), the former first-line antimalarial, and are ubiquitous to infections that fail CQ treatment. However, treatment can often be successful in individuals harboring mutant pfcrt alleles, raising questions about the role of host immunity or pharmacokinetics vs. the parasite genetic background in contributing to treatment outcomes. To examine whether the parasite genetic background dictates the degree of mutant pfcrt-mediated CQ resistance, we replaced the wild type pfcrt allele in three CQ-sensitive strains with mutant pfcrt of the 7G8 allelic type prevalent in South America, the Oceanic region and India. Recombinant clones exhibited strain-dependent CQ responses that ranged from high-level resistance to an incremental shift that did not meet CQ resistance criteria. Nonetheless, even in the most susceptible clones, 7G8 mutant pfcrt enabled parasites to tolerate CQ pressure and recrudesce in vitro after treatment with high concentrations of CQ. 7G8 mutant pfcrt was found to significantly impact parasite responses to other antimalarials used in artemisinin-based combination therapies, in a strain-dependent manner. We also report clinical isolates from French Guiana that harbor mutant pfcrt, identical or related to the 7G8 haplotype, and manifest a CQ tolerance phenotype. One isolate, H209, harbored a novel PfCRT C350R mutation and demonstrated reduced quinine and artemisinin susceptibility. Our data: 1) suggest that high-level CQR is a complex biological process dependent on the presence of mutant pfcrt; 2) implicate a role for variant pfcrt alleles in modulating parasite susceptibility to other clinically important antimalarials; and 3) uncover the existence of a phenotype of CQ tolerance in some strains harboring mutant pfcrt.


PLOS Neglected Tropical Diseases | 2013

Whole Genome Sequencing of Field Isolates Reveals a Common Duplication of the Duffy Binding Protein Gene in Malagasy Plasmodium vivax Strains

Didier Ménard; Ernest R. Chan; Christophe Benedet; Arsène Ratsimbasoa; Saorin Kim; Pheaktra Chim; Catherine Do; Benoit Witkowski; Rémy Durand; Marc Thellier; Carlo Severini; Eric Legrand; Lise Musset; Bakri Y. M. Nour; Odile Mercereau-Puijalon; David Serre; Peter A. Zimmerman

Background Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes. Methods/Principal Findings Through recent whole genome sequencing we obtained ≥70× coverage of the P. vivax genome from five field-isolates, resulting in ≥93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported. Conclusions/Significance The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Multiple independent introductions of Plasmodium falciparum in South America

Erhan Yalcindag; Eric Elguero; Céline Arnathau; Patrick Durand; Jean Akiana; Timothy J. C. Anderson; Agnès Aubouy; Francois Balloux; Patrick Besnard; Hervé Bogreau; Pierre Carnevale; Umberto D'Alessandro; Didier Fontenille; Dionicia Gamboa; Thibaut Jombart; Jacques Le Mire; Eric Leroy; Amanda Maestre; Mayfong Mayxay; Didier Ménard; Lise Musset; Paul N. Newton; Dieudonné Nkoghe; Oscar Noya; Benjamin Ollomo; Christophe Rogier; Vincent Veron; Albina Wide; Sedigheh Zakeri; Bernard Carme

The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.


Malaria Journal | 2013

Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data

Aurélia Stefani; Isabelle Dusfour; Ana Paula Sales de Andrade Corrêa; Manoel C. B. Cruz; Nadine Dessay; Allan Kr Galardo; Clícia Denis Galardo; Romain Girod; Margarete do Socorro Mendonça Gomes; Helen da Costa Gurgel; Ana Cristina da Silva Ferreira Lima; Eduardo S. Moreno; Lise Musset; Mathieu Nacher; Alana C. S. Soares; Bernard Carme; Emmanuel Roux

The nine countries sharing the Amazon forest accounted for 89% of all malaria cases reported in the Americas in 2008. Remote sensing can help identify the environmental determinants of malaria transmission and their temporo-spatial evolution. Seventeen studies characterizing land cover or land use features, and relating them to malaria in the Amazon subregion, were identified. These were reviewed in order to improve the understanding of the land cover/use class roles in malaria transmission. The indicators affecting the transmission risk were summarized in terms of temporal components, landscape fragmentation and anthropic pressure. This review helps to define a framework for future studies aiming to characterize and monitor malaria.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt

Stéphane Pelleau; Eli L. Moss; Satish K. Dhingra; Béatrice Volney; Jessica Casteras; Stanislaw J. Gabryszewski; Sarah K. Volkman; Dyann F. Wirth; Eric Legrand; David A. Fidock; Daniel E. Neafsey; Lise Musset

Significance This study addresses the evolutionary dynamics of antimalarial drug resistance after changes in drug use. We show that chloroquine resistance in Plasmodium falciparum from French Guiana was lost after sustained drug removal, whereas the resistance marker PfCRT K76T remained fixed in the parasite population. This phenotypic reversion was caused by the acquisition of a single additional C350R substitution in PfCRT. This genetic change also impaired susceptibility to piperaquine, suggesting that piperaquine pressure drove the expansion of this allele. These findings have important implications for understanding drug resistance evolution when standard resistance alleles reach fixation and can lose their utility as markers because of adaptive changes at other amino acid positions or loci in the genome. In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance.


PLOS Neglected Tropical Diseases | 2015

Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

Mary Lynn Baniecki; Aubrey L. Faust; Stephen F. Schaffner; Daniel J. Park; Kevin Galinsky; Rachel Daniels; Elizabeth J. Hamilton; Marcelo U. Ferreira; Nadira D. Karunaweera; David Serre; Peter A. Zimmerman; Juliana M. Sá; Thomas E. Wellems; Lise Musset; Eric Legrand; Alexandre Melnikov; Daniel E. Neafsey; Sarah K. Volkman; Dyann F. Wirth; Pardis C. Sabeti

Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.


Malaria Journal | 2015

COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data

Kevin Galinsky; Clarissa Valim; Arielle Salmier; Benoit de Thoisy; Lise Musset; Eric Legrand; Aubrey L. Faust; Mary Lynn Baniecki; Daouda Ndiaye; Rachel Daniels; Daniel L. Hartl; Pardis C. Sabeti; Dyann F. Wirth; Sarah K. Volkman; Daniel E. Neafsey

BackgroundComplex malaria infections are defined as those containing more than one genetically distinct lineage of Plasmodium parasite. Complexity of infection (COI) is a useful parameter to estimate from patient blood samples because it is associated with clinical outcome, epidemiology and disease transmission rate. This manuscript describes a method for estimating COI using likelihood, called COIL, from a panel of bi-allelic genotyping assays.MethodsCOIL assumes that distinct parasite lineages in complex infections are unrelated and that genotyped loci do not exhibit significant linkage disequilibrium. Using the population minor allele frequency (MAF) of the genotyped loci, COIL uses the binomial distribution to estimate the likelihood of a COI level given the prevalence of observed monomorphic or polymorphic genotypes within each sample.ResultsCOIL reliably estimates COI up to a level of three or five with at least 24 or 96 unlinked genotyped loci, respectively, as determined by in silico simulation and empirical validation. Evaluation of COI levels greater than five in patient samples may require a very large collection of genotype data, making sequencing a more cost-effective approach for evaluating COI under conditions when disease transmission is extremely high. Performance of the method is positively correlated with the MAF of the genotyped loci. COI estimates from existing SNP genotype datasets create a more detailed portrait of disease than analyses based simply on the number of polymorphic genotypes observed within samples.ConclusionsThe capacity to reliably estimate COI from a genome-wide panel of SNP genotypes provides a potentially more accurate alternative to methods relying on PCR amplification of a small number of loci for estimating COI. This approach will also increase the number of applications of SNP genotype data, providing additional motivation to employ SNP barcodes for studies of disease epidemiology or control measure efficacy. The COIL program is available for download from GitHub, and users may also upload their SNP genotype data to a web interface for simple and efficient determination of sample COI.


Memorias Do Instituto Oswaldo Cruz | 2014

Malaria on the Guiana Shield: a review of the situation in French Guiana.

Lise Musset; Stéphane Pelleau; Romain Girod; Vanessa Ardillon; Luisiane Carvalho; Isabelle Dusfour; Margarete do Socorro Mendonça Gomes; Félix Djossou; Eric Legrand

In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed.


Antimicrobial Agents and Chemotherapy | 2013

High-Throughput Analysis of Antimalarial Susceptibility Data by the WorldWide Antimalarial Resistance Network (WWARN) In Vitro Analysis and Reporting Tool

Charles J. Woodrow; Sabina Dahlström; Richard Cooksey; Jennifer A. Flegg; Hervé Le Nagard; Claribel Murillo; Didier Ménard; François Nosten; Kanlaya Sriprawat; Lise Musset; Neils B. Quashie; Pharath Lim; Rick M. Fairhurst; Sam L. Nsobya; Véronique Sinou; Harald Noedl; Bruno Pradines; Jacob D. Johnson; Philippe J Guerin; Carol Hopkins Sibley; Jacques Le Bras

ABSTRACT Assessment of in vitro susceptibility is a fundamental component of antimalarial surveillance studies, but wide variations in the measurement of parasite growth and the calculation of inhibitory constants make comparisons of data from different laboratories difficult. Here we describe a Web-based, high-throughput in vitro analysis and reporting tool (IVART) generating inhibitory constants for large data sets. Fourteen primary data sets examining laboratory-determined susceptibility to artemisinin derivatives and artemisinin combination therapy partner drugs were collated from 11 laboratories. Drug concentrations associated with half-maximal inhibition of growth (IC50s) were determined by a modified sigmoid Emax model-fitting algorithm, allowing standardized analysis of 7,350 concentration-inhibition assays involving 1,592 isolates. Examination of concentration-inhibition data revealed evidence of apparent paradoxical growth at high concentrations of nonartemisinin drugs, supporting amendment of the method for calculating the maximal drug effect in each assay. Criteria for defining more-reliable IC50s based on estimated confidence intervals and growth ratios improved correlation coefficients for the drug pairs mefloquine-quinine and chloroquine-desethylamodiaquine in 9 of 11 and 8 of 8 data sets, respectively. Further analysis showed that maximal drug inhibition was higher for artemisinins than for other drugs, particularly in ELISA (enzyme-linked immunosorbent assay)-based assays, a finding consistent with the earlier onset of action of these drugs in the parasite life cycle. This is the first high-throughput analytical approach to apply consistent constraints and reliability criteria to large, diverse antimalarial susceptibility data sets. The data also illustrate the distinct biological properties of artemisinins and underline the need to apply more sensitive approaches to assessing in vitro susceptibility to these drugs.

Collaboration


Dive into the Lise Musset's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Félix Djossou

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magalie Demar

University of French Guiana

View shared research outputs
Top Co-Authors

Avatar

Emilie Mosnier

University of French Guiana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge