Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisette Stolk is active.

Publication


Featured researches published by Lisette Stolk.


Nature Genetics | 2009

Meta-analysis of genome-wide association data identifies two loci influencing age at menarche.

John Perry; Lisette Stolk; Nora Franceschini; Kathryn L. Lunetta; Guangju Zhai; Patrick F. McArdle; Albert V. Smith; Thor Aspelund; Stefania Bandinelli; Eric Boerwinkle; Lynn Cherkas; Gudny Eiriksdottir; Karol Estrada; Luigi Ferrucci; Aaron R. Folsom; Melissa Garcia; Vilmundur Gudnason; Albert Hofman; David Karasik; Douglas P. Kiel; Lenore J. Launer; Joyce B. J. van Meurs; Michael A. Nalls; Fernando Rivadeneira; Alan R. Shuldiner; Andrew Singleton; Nicole Soranzo; Toshiko Tanaka; Jenny A. Visser; Michael N. Weedon

We conducted a meta-analysis of genome-wide association data to detect genes influencing age at menarche in 17,510 women. The strongest signal was at 9q31.2 (P = 1.7 × 10−9), where the nearest genes include TMEM38B, FKTN, FSD1L, TAL2 and ZNF462. The next best signal was near the LIN28B gene (rs7759938; P = 7.0 × 10−9), which also influences adult height. We provide the first evidence for common genetic variants influencing female sexual maturation.


PLOS Genetics | 2009

Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size

Nicole Soranzo; Fernando Rivadeneira; Usha Chinappen-Horsley; Ida Malkina; J. Brent Richards; Naomi Hammond; Lisette Stolk; Alexandra C. Nica; Michael Inouye; Albert Hofman; Jonathan Stephens; Eleanor Wheeler; Pascal P. Arp; Rhian Gwilliam; P. Mila Jhamai; Simon Potter; Amy Chaney; Mohammed J. R. Ghori; Radhi Ravindrarajah; Sergey Ermakov; Karol Estrada; Huibert A. P. Pols; Frances M. K. Williams; Wendy L. McArdle; Joyce B. J. van Meurs; Ruth J. F. Loos; Emmanouil T. Dermitzakis; Kourosh R. Ahmadi; Deborah J. Hart; Willem H. Ouwehand

Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1×10−8 and rs910316 in TMED10, P-value = 1.4×10−7) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3×10−7 and rs849141 in JAZF1, P-value = 3.2×10−11). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4×10−5 and rs6817306 in LCORL, P-value = 4×10−4), hip axis length (including rs6830062 at LCORL, P-value = 4.8×10−4 and rs4911494 at UQCC, P-value = 1.9×10−4), and femur length (including rs710841 at PRKG2, P-value = 2.4×10−5 and rs10946808 at HIST1H1D, P-value = 6.4×10−6). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.


Arthritis & Rheumatism | 2010

A Genome-Wide Association Study Identifies an Osteoarthritis Susceptibility Locus on Chromosome 7q22

Kerkhof Hjm.; Rik Lories; Ingrid Meulenbelt; Ingileif Jonsdottir; Ana M. Valdes; P. Arp; Thorvaldur Ingvarsson; Mila Jhamai; Helgi Jonsson; Lisette Stolk; Gudmar Thorleifsson; Guangju Zhai; Feng Zhang; Yanyan Zhu; R. van der Breggen; A J Carr; Michael Doherty; Sally Doherty; David T. Felson; Antonio Gonzalez; Bjarni V. Halldórsson; Deborah J. Hart; Valdimar B. Hauksson; Albert Hofman; Ioannidis Jpa.; Margreet Kloppenburg; Nancy E. Lane; John Loughlin; Frank P. Luyten; Michael C. Nevitt

OBJECTIVE To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. METHODS We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2 OA phenotypes were analyzed in 14,938 OA cases and approximately 39,000 controls. Meta-analyses were performed using the program Comprehensive Meta-analysis, with P values <1 x 10(-7) considered genome-wide significant. RESULTS The C allele of rs3815148 on chromosome 7q22 (minor allele frequency 23%; intron 12 of the COG5 gene) was associated with a 1.14-fold increased risk (95% confidence interval 1.09-1.19) of knee and/or hand OA (P = 8 x 10(-8)) and also with a 30% increased risk of knee OA progression (95% confidence interval 1.03-1.64) (P = 0.03). This SNP is in almost complete linkage disequilibrium with rs3757713 (68 kb upstream of GPR22), which is associated with GPR22 expression levels in lymphoblast cell lines (P = 4 x 10(-12)). Immunohistochemistry experiments revealed that G protein-coupled receptor protein 22 (GPR22) was absent in normal mouse articular cartilage or synovium. However, GPR22-positive chondrocytes were found in the upper layers of the articular cartilage of mouse knee joints that were challenged with in vivo papain treatment or methylated bovine serum albumin treatment. GPR22-positive chondrocyte-like cells were also found in osteophytes in instability-induced OA. CONCLUSION Our findings identify a novel common variant on chromosome 7q22 that influences susceptibility to prevalence and progression of OA. Since the GPR22 gene encodes a G protein-coupled receptor, this is potentially an interesting therapeutic target.


PLOS Genetics | 2012

A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation

Andrea D. Coviello; Robin Haring; Melissa F. Wellons; Dhananjay Vaidya; Terho Lehtimäki; Sarah Keildson; Kathryn L. Lunetta; Chunyan He; Myriam Fornage; Vasiliki Lagou; Massimo Mangino; N. Charlotte Onland-Moret; Brian H. Chen; Joel Eriksson; Melissa Garcia; Yongmei Liu; Annemarie Koster; Kurt Lohman; Leo-Pekka Lyytikäinen; Ann Kristin Petersen; Jennifer Prescott; Lisette Stolk; Liesbeth Vandenput; Andrew R. Wood; Wei Vivian Zhuang; Aimo Ruokonen; Anna Liisa Hartikainen; Anneli Pouta; Stefania Bandinelli; Reiner Biffar

Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.


Diabetes Care | 2013

High Bone Mineral Density and Fracture Risk in Type 2 Diabetes as Skeletal Complications of Inadequate Glucose Control: The Rotterdam Study

Ling Oei; M. Carola Zillikens; Abbas Dehghan; Gabriëlle H.S. Buitendijk; Martha C. Castaño-Betancourt; Karol Estrada; Lisette Stolk; Edwin H. G. Oei; Joyce B. J. van Meurs; Joseph A M J L Janssen; Albert Hofman; Johannes P.T.M. van Leeuwen; Jacqueline C. M. Witteman; Huibert A. P. Pols; André G. Uitterlinden; Caroline C. W. Klaver; Oscar H. Franco; Fernando Rivadeneira

OBJECTIVE Individuals with type 2 diabetes have increased fracture risk despite higher bone mineral density (BMD). Our aim was to examine the influence of glucose control on skeletal complications. RESEARCH DESIGN AND METHODS Data of 4,135 participants of the Rotterdam Study, a prospective population-based cohort, were available (mean follow-up 12.2 years). At baseline, 420 participants with type 2 diabetes were classified by glucose control (according to HbA1c calculated from fructosamine), resulting in three comparison groups: adequately controlled diabetes (ACD; n = 203; HbA1c <7.5%), inadequately controlled diabetes (ICD; n = 217; HbA1c ≥7.5%), and no diabetes (n = 3,715). Models adjusted for sex, age, height, and weight (and femoral neck BMD) were used to test for differences in bone parameters and fracture risk (hazard ratio [HR] [95% CI]). RESULTS The ICD group had 1.1–5.6% higher BMD, 4.6–5.6% thicker cortices, and −1.2 to −1.8% narrower femoral necks than ACD and ND, respectively. Participants with ICD had 47–62% higher fracture risk than individuals without diabetes (HR 1.47 [1.12–1.92]) and ACD (1.62 [1.09–2.40]), whereas those with ACD had a risk similar to those without diabetes (0.91 [0.67–1.23]). CONCLUSIONS Poor glycemic control in type 2 diabetes is associated with fracture risk, high BMD, and thicker femoral cortices in narrower bones. We postulate that fragility in apparently “strong” bones in ICD can result from microcrack accumulation and/or cortical porosity, reflecting impaired bone repair.


PLOS Genetics | 2011

Genetic Determinants of Serum Testosterone Concentrations in Men

Claes Ohlsson; Henri Wallaschofski; Kathryn L. Lunetta; Lisette Stolk; John Perry; Annemarie Koster; Ann Kristin Petersen; Joel Eriksson; Terho Lehtimäki; Ilpo Huhtaniemi; Geoffrey L. Hammond; Marcello Maggio; Andrea D. Coviello; Luigi Ferrucci; Margit Heier; Albert Hofman; Kate L. Holliday; John-Olov Jansson; Mika Kähönen; David Karasik; Magnus Karlsson; Douglas P. Kiel; Yongmei Liu; Östen Ljunggren; Mattias Lorentzon; Leo-Pekka Lyytikäinen; Thomas Meitinger; Dan Mellström; David Melzer; Iva Miljkovic

Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterones high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBGs affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.


Nature Genetics | 2009

Loci at chromosomes 13, 19 and 20 influence age at natural menopause

Lisette Stolk; Guangju Zhai; Joyce B. J. van Meurs; Michael Verbiest; Jenny A. Visser; Karol Estrada; Fernando Rivadeneira; Frances M. K. Williams; Lynn Cherkas; Panos Deloukas; Nicole Soranzo; Jules J. Keyzer; Victor J. M. Pop; Paul Lips; Corinne E. I. Lebrun; Yvonne T. van der Schouw; Diederick E. Grobbee; Jacqueline C. M. Witteman; Albert Hofman; Huibert A. P. Pols; Joop S.E. Laven; Tim D. Spector; André G. Uitterlinden

We conducted a genome-wide association study for age at natural menopause in 2,979 European women and identified six SNPs in three loci associated with age at natural menopause: chromosome 19q13.4 (rs1172822; –0.4 year per T allele (39%); P = 6.3 × 10−11), chromosome 20p12.3 (rs236114; +0.5 year per A allele (21%); P = 9.7 × 10−11) and chromosome 13q34 (rs7333181; +0.5 year per A allele (12%); P = 2.5 × 10−8). These common genetic variants regulate timing of ovarian aging, an important risk factor for breast cancer, osteoporosis and cardiovascular disease.


JAMA | 2013

Identification of genetic loci associated with Helicobacter pylori serologic status.

Julia Mayerle; Caroline M. den Hoed; Lisette Stolk; Georg Homuth; Marjolein J. Peters; Lisette Capelle; Kathrin Zimmermann; Fernando Rivadeneira; Sybille Gruska; Henry Völzke; Annemarie C. de Vries; Uwe Völker; Alexander Teumer; Joyce B. J. van Meurs; Ivo Steinmetz; Matthias Nauck; Florian Ernst; Fu Weiss; Albert Hofman; Martin Zenker; Heyo K. Kroemer; Holger Prokisch; André G. Uitterlinden; Markus M. Lerch; Ernst J. Kuipers

IMPORTANCE Helicobacter pylori is a major cause of gastritis and gastroduodenal ulcer disease and can cause cancer. H. pylori prevalence is as high as 90% in some developing countries but 10% of a given population is never colonized, regardless of exposure. Genetic factors are hypothesized to confer H. pylori susceptibility. OBJECTIVE To identify genetic loci associated with H. pylori seroprevalence in 2 independent population-based cohorts and to determine their putative pathophysiological role by whole-blood RNA gene expression profiling. DESIGN, SETTING, AND PARTICIPANTS Two independent genome-wide association studies (GWASs) and a subsequent meta-analysis were conducted for anti-H. pylori IgG serology in the Study of Health in Pomerania (SHIP) (recruitment, 1997-2001 [n = 3830]) as well as the Rotterdam Study (RS-I) (recruitment, 1990-1993) and RS-II (recruitment, 2000-2001 [n = 7108]) populations. Whole-blood RNA gene expression profiles were analyzed in RS-III (recruitment, 2006-2008 [n = 762]) and SHIP-TREND (recruitment, 2008-2012 [n = 991]), and fecal H. pylori antigen in SHIP-TREND (n = 961). MAIN OUTCOMES AND MEASURES H. pylori seroprevalence. RESULTS Of 10,938 participants, 6160 (56.3%) were seropositive for H. pylori. GWASs identified the toll-like receptor (TLR) locus (4p14; top-ranked single-nucleotide polymorphism (SNP), rs10004195; P = 1.4 × 10(-18); odds ratio, 0.70 [95% CI, 0.65 to 0.76]) and the FCGR2A locus (1q23.3; top-ranked SNP, rs368433; P = 2.1 × 10(-8); odds ratio, 0.73 [95% CI, 0.65 to 0.81]) as associated with H. pylori seroprevalence. Among the 3 TLR genes at 4p14, only TLR1 was differentially expressed per copy number of the minor rs10004195-A allele (β = -0.23 [95% CI, -0.34 to -0.11]; P = 2.1 × 10(-4)). Individuals with high fecal H. pylori antigen titers (optical density >1) also exhibited the highest 25% of TLR1 expression levels (P = .01 by χ2 test). Furthermore, TLR1 exhibited an Asn248Ser substitution in the extracellular domain strongly linked to the rs10004195 SNP. CONCLUSIONS AND RELEVANCE GWAS meta-analysis identified an association between TLR1 and H. pylori seroprevalence, a finding that requires replication in nonwhite populations. If confirmed, genetic variations in TLR1 may help explain some of the observed variation in individual risk for H. pylori infection.


Nature Communications | 2015

Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome

Felix R. Day; David A. Hinds; Joyce Y. Tung; Lisette Stolk; Unnur Styrkarsdottir; Richa Saxena; Andrew Bjonnes; Linda Broer; David B. Dunger; Bjarni V. Halldórsson; Debbie A. Lawlor; Guillaume Laval; Iain Mathieson; Wendy L. McCardle; Yvonne V. Louwers; Cindy Meun; Susan M. Ring; Robert A. Scott; Patrick Sulem; André G. Uitterlinden; Nicholas J. Wareham; Unnur Thorsteinsdottir; Corrine K. Welt; Kari Stefansson; Joop S.E. Laven; Ken K. Ong; John R. B. Perry

Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet there is little consensus regarding its aetiology. Here we perform a genome-wide association study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759 controls, with follow-up in a further ∼2,000 clinically validated cases and ∼100,000 controls. We identify six signals for PCOS at genome-wide statistical significance (P<5 × 10−8), in/near genes ERBB4/HER4, YAP1, THADA, FSHB, RAD50 and KRR1. Variants in/near three of the four epidermal growth factor receptor genes (ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian randomization analyses indicate causal roles in PCOS aetiology for higher BMI (P=2.5 × 10−9), higher insulin resistance (P=6 × 10−4) and lower serum sex hormone binding globulin concentrations (P=5 × 10−4). Furthermore, genetic susceptibility to later menopause is associated with higher PCOS risk (P=1.6 × 10−8) and PCOS-susceptibility alleles are associated with higher serum anti-Müllerian hormone concentrations in girls (P=8.9 × 10−5). This large-scale study implicates an aetiological role of the epidermal growth factor receptors, infers causal mechanisms relevant to clinical management and prevention, and suggests balancing selection mechanisms involved in PCOS risk.


Arthritis & Rheumatism | 2009

A functional polymorphism in the catechol‐O‐methyltransferase gene is associated with osteoarthritis‐related pain

Joyce B. J. van Meurs; André G. Uitterlinden; Lisette Stolk; Hanneke J. M. Kerkhof; Albert Hofman; Huibert A. P. Pols; Sita M. A. Bierma-Zeinstra

The aim of this study was to examine whether a well-known functional polymorphism in COMT (Val158Met) influences osteoarthritis (OA)–related pain.

Collaboration


Dive into the Lisette Stolk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Fernando Rivadeneira

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huibert A. P. Pols

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Verbiest

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Ana M. Valdes

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.G. Uitterlinden

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge