Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisha Wang is active.

Publication


Featured researches published by Lisha Wang.


PLOS ONE | 2012

Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer.

Qifeng Wang; Zhaohui Huang; Shujuan Ni; Xiuying Xiao; Qinghua Xu; Lisha Wang; Dan Huang; Cong Tan; Weiqi Sheng; Xiang Du

Background Colorectal cancer (CRC) is a major cause of death worldwide. Sensitive, non-invasive diagnostic screen methods are urgently needed to improve its survival rates. Stable circulating microRNA offers unique opportunities for the early diagnosis of several diseases, including cancers. Our aim has been to find new plasma miRNAs that can be used as biomarkers for the detection of CRC. Methodology/Principal Findings According to the results of miRNA profiling performed on pooling plasma samples form 10 CRC patients or 10 healthy controls, a panel of miRNAs (hsa-miR-10a, -19a, -22*, -24, -92a, 125a-5p, -141, -150, -188-3p, -192, -210, -221, -224*, -376a, -425*, -495, -572, -601, -720, -760 and hsa-let-7a, -7e) were deregulated in CRC plasma with fold changes >5. After large scale validation by qRT-PCR performed on another 191 independent individuals (90 CRC, 43 advanced adenoma and 58 healthy participants), we found that the levels of plasma miR-601 and miR-760 were significantly decreased in colorectal neoplasia (carcinomas and advanced adenomas) compared with healthy controls. ROC curve analysis showed that plasma miR-601 and miR-760 were of significant diagnostic value for advanced neoplasia. These two miRNAs together yield an AUC of 0.792 with 83.3% sensitivity and 69.1% specificity for separating CRC from normal controls, and yield an AUC of 0.683 with 72.1% sensitivity and 62.1% specificity in discriminating advanced adenomas from normal controls. Conclusions/Significance Plasma miR-601 and miR-760 can potentially serve as promising non-invasive biomarkers for the early detection of CRC.


Critical Reviews in Oncology Hematology | 2014

Biomarkers in bladder cancer: Translational and clinical implications

Liang Cheng; Darrell D. Davison; Julia Adams; Antonio Lopez-Beltran; Lisha Wang; Rodolfo Montironi; Shaobo Zhang

Bladder cancer is associated with high recurrence and mortality rates. These tumors show vast heterogeneity reflected by diverse morphologic manifestations and various molecular alterations associated with these disease phenotypes. Biomarkers that prospectively evaluate disease aggressiveness, progression risk, probability of recurrence and overall prognosis would improve patient care. Integration of molecular markers with conventional pathologic staging of bladder cancers may refine clinical decision making for the selection of adjuvant and salvage therapy. In the past decade, numerous bladder cancer biomarkers have been identified, including various tumor suppressor genes, oncogenes, growth factors, growth factor receptors, hormone receptors, proliferation and apoptosis markers, cell adhesion molecules, stromal factors, and oncoproteins. Recognition of two distinct pathways for urothelial carcinogenesis represents a major advance in the understanding and management of this disease. Nomograms for combining results from multiple biomarkers have been proposed to increase the accuracy of clinical predictions. The scope of this review is to summarize the major biomarker findings that may have translational and clinical implications.


Clinical Cancer Research | 2014

MicroRNA-202-3p Inhibits Cell Proliferation by Targeting ADP-Ribosylation Factor-like 5A in Human Colorectal Carcinoma

Qifeng Wang; Zhaohui Huang; Weijie Guo; Shujuan Ni; Xiuying Xiao; Lisha Wang; Dan Huang; Cong Tan; Qinghua Xu; Ruopeng Zha; Jiwei Zhang; Weiqi Sheng; Xianghuo He; Xiang Du

Purpose: MicroRNAs (miRNA) that are strongly implicated in carcinogenesis have recently reshaped our understanding of the role of non–protein-coding RNAs. Here, we focused on the function and molecular mechanism of miR-202-3p and its potential clinical application in colorectal cancer. Experimental Design: miR-202-3p expression was determined by quantitative reverse transcriptase PCR (qRT-PCR) in 94 colorectal cancer tissues and corresponding noncancerous tissues (NCT). Cell proliferation and colony formation assays in vitro and xenograft experiments in vivo were used to evaluate the effect of miR-202-3p on colorectal cancer cell proliferation. Luciferase assay and Western blot analysis were performed to validate the potential targets of miR-202-3p after the preliminary screening by online prediction and microarray analysis. The mRNA and protein levels of target genes were detected by qRT-PCR and immunohistochemical staining. The copy number of pre-miR-202 was measured by quantitative PCR. Results: First, miR-202-3p was significantly downregulated in 46.7% colorectal cancer samples compared with NCTs. The overexpression of miR-202-3p inhibited colorectal cancer cell growth in vitro and repressed tumorigenesis in nude mice. Then, miR-202-3p downregulated ADP-ribosylation factor-like 5A (ARL5A) protein level by binding to its 3′ untranslated region, and knockdown of ARL5A phenocopied the proliferation inhibition effect of miR-202-3p. Furthermore, both of ARL5A mRNA and protein levels were upregulated in colorectal cancer samples compared with NCTs and high ARL5A protein levels predicted a poor prognosis. Conclusions: miR-202-3p might function as a tumor suppressor in colorectal cancer, and ARL5A, the functional target of miR-202-3p in colorectal cancer, is a potential prognostic factor for colorectal cancer. Clin Cancer Res; 20(5); 1146–57. ©2013 AACR.


Neuroscience | 2010

Expression of sigma receptor 1 mRNA and protein in rat retina.

Lei-Lei Liu; Lisha Wang; Yang Zhong; Xuelian Yang

Sigma receptor (sigmaR), known as a unique nonopiate, nonphencyclidine brain receptor, can bind diverse classes of psychotropic drugs, neurosteroids and other synthetic compounds, such as (+)pentazocine, etc. Two types of sigmaRs have been identified: sigmaR1 and sigmaR2. In this work, we examined the expression of sigmaR1 in rat retina by reverse transcription-polymerase chain reactive (RT-PCR) analysis and immunofluorescence double labeling. RT-PCR analysis showed that sigmaR1 mRNA was present in rat retina. Furthermore, labeling for sigmaR1 was diffusely distributed in the outer and inner plexiform layers. The sigmaR1-immunoreactivity (IR) was also observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina sigmaR1 was expressed in all horizontal cells labeled by calbindin. In contrast, no sigmaR1-IR was detected in several subtypes of bipolar cells, including rod-dominant ON-type bipolar cells, types 2, 3, 5 and 8 bipolar cells, labeled by protein kinase C (PKC), recoverin and hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) respectively. In the inner retina, most of GABAergic amacrine cells, including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, expressed sigmaR1. Some glycinergic amacrine cells were also labeled by sigmaR1, but glycinergic AII amacrine cells were not labeled. In addition, sigmaR1-IR was seen in almost all somata of the ganglion cells retrogradely labeled by fluorogold. These results suggest that sigmaR1 may have neuromodulatory and neuroprotective roles in the retina.


Endocrine Pathology | 2016

Neuroendocrine Tumors of the Prostate: Emerging Insights from Molecular Data and Updates to the 2016 World Health Organization Classification

David S. Priemer; Rodolfo Montironi; Lisha Wang; Sean R. Williamson; Antonio Lopez-Beltran; Liang Cheng

Neuroendocrine neoplasms of the prostate represent a multifarious group of tumors that exist both in pure forms and associated with prostatic adenocarcinoma. Morphologically, neuroendocrine cells in prostate neoplasms can range from being indistinguishable from surrounding prostate adenocarcinoma cells to having high-grade neuroendocrine appearances similar to neuroendocrine malignancies of other organs. On the molecular level, neuroendocrine malignancies arising in the setting of prostate adenocarcinoma have been the subject of a large amount of recent research, most of which has supported the conclusion that neuroendocrine malignancy within the prostate develops as a transdifferentiation from prostate adenocarcinoma. There has not, however, been substantial investigation into rare, pure neuroendocrine malignancies and the possibility that these tumors may have a different cell of origin and molecular genesis. Here, we discuss the morphologic spectrum of malignant neuroendocrine prostate neoplasms and review the most recent molecular data on the subject of malignant neuroendocrine differentiation in prostatic adenocarcinoma. In reflection of the most recent data, we also discuss diagnostic classification of prostate neuroendocrine tumors with reference to the 2016 World Health Organization (WHO) classification. We discuss the reporting of these tumors, placing emphasis on the differentiation between pure and mixed neuroendocrine malignancies so that, in the least, they can be easily identified for the purposes of future clinical and laboratory-based investigation. Finally, we suggest a designation for an unclassifiable (or not otherwise specified) high-grade neuroendocrine prostate malignancy whose features do not easily place it into one of the WHO diagnostic entities.


Current Drug Targets | 2015

Molecular foundations for personalized therapy in prostate cancer

Kurt W. Fisher; Rodolfo Montironi; Antonio Lòpez Beltran; Holger Moch; Lisha Wang; Marina Scarpelli; Sean R. Williamson; Michael O. Koch; Liang Cheng

Prostate cancer is the most common and second most lethal cancer in men. The majority of prostate cancers are histologically similar to acinar adenocarcinomas and rely on androgen-dependent signaling for their development and progression. Androgen deprivation therapy is a mainstay of treatment regimens and we discuss the recent advancements in androgen-deprivation therapy. Recent advances in defining the genetic landscape of prostate cancer have shown that the depth of genetic heterogeneity surpasses what can be seen histologically and has the ability to redefine treatments. TMPRSS2-ETS family fusion proteins are unique to prostate cancer and we discuss their role in carcinogenesis, prognosis, and the development of TMPRSS2-ETS family gene fusion targeted therapy. Inactivation of the tumor suppressor PTEN leads to activation of the PI3K/Akt/mTOR pathway and we discuss the prognostic and treatment implications. Molecular genetic analysis has recently demonstrated that clinically aggressive high grade neuroendocrine prostate carcinomas contain a high prevalence of overexpression of Aurora A kinase and N-myc. We discuss the role of Aurora A kinase and N-myc in the development of the aggressive neuroendocrine phenotype and the development of targeted inhibitors of this specific genetic subtype. Lastly, we briefly discuss emerging genetic subtypes defined by either SPINK1 overexpression, CHD1 inactivation, or SPOP mutations. By reviewing the associations between the morphologic features and the molecular genetics of prostate cancer we hope to provide insight and guidance to the emerging options for targeted therapy.


International Journal of Biological Sciences | 2015

FOXM1 promotes lung adenocarcinoma invasion and metastasis by upregulating SNAIL

Ping Wei; Nu Zhang; Yiqin Wang; Dawei Li; Lisha Wang; Xiangjie Sun; Chen Shen; Yusi Yang; Xiaoyan Zhou; Xiang Du

The forkhead box M1 (FOXM1) transcription factor is one of the key genes inducing tumor invasion and metastasis by an unknown mechanism. In this study, we set out to investigate the effects of FOXM1 overexpression on metastatic human lung adenocarcinoma and the underlying mechanism. FOXM1 expression was analyzed in 78 frozen lung adenocarcinoma tissue samples using an Affymetrix microarray and a 155-paraffin-embedded lung adenocarcinoma tissue microarray with immunohistochemical detection. FOXM1 was found to be overexpressed in lung adenocarcinoma, particularly in metastatic patients, compared to non-metastatic patients. Knockdown of FOXM1 by a specific siRNA significantly suppressed EMT progression, migration and invasion of lung adenocarcinoma cells in vitro, and tumor growth and metastasis in vivo, whereas restored expression of FOXM1 had the opposite effect. FOXM1 binds directly to the SNAIL promoter through two specific binding sites and constitutively transactivates it. Collectively, our findings indicate that FOXM1 may play an important role in advancing lung adenocarcinoma progression. Aberrant FOXM1 expression directly and constitutively activates SNAIL, thereby promoting lung adenocarcinoma metastasis. Inhibition of FOXM1-SNAIL signaling may present an ideal target for future treatment.


Journal of Translational Medicine | 2013

Role of MUC20 overexpression as a predictor of recurrence and poor outcome in colorectal cancer

Xiuying Xiao; Lisha Wang; Ping Wei; Yayun Chi; Dali Li; Qifeng Wang; Shujuan Ni; Cong Tan; Weiqi Sheng; Menghong Sun; Xiaoyan Zhou; Xiang Du

BackgroundColorectal cancer (CRC) remains one of the most common cancers worldwide. We observed that MUC20 was significantly up-regulated in CRC patients with poor prognosis based on the microarray analysis. However, little is known about the role of MUC20 in CRC.MethodsMicroarray experiments were performed on the Affymetrix U133 plus 2.0 GeneChip Array. The protein and mRNA levels of MUC20 were examined by immunohistochemistry (IHC) and Real-Time quantitative PCR (RT-qPCR) in CRC tissues and adjacent noncancerous tissues (ANCT). ShRNA and overexpression plasmids were used to regulate MUC20 expression in CRC cell lines in vitro; wound healing, Transwell migration assays, and Western blotting were used to detect migration and invasion changes.ResultsMUC20 was one of the up-regulated genes in CRC patients with poor prognosis by microarray. Using IHC and RT-qPCR, we showed that MUC20 expression was significantly higher in CRC tissues than in ANCT (Pu2009<u20090.05). We further showed that MUC20 overexpression was correlated with recurrence and poor outcome (Pu2009<u20090.05). The Kaplan-Meier survival curves indicated that disease-free survival (DFS) and overall survival (OS) were significantly worse in CRC patients with MUC20 overexpression. The Cox multivariate analysis revealed that MUC20 overexpression and TNM stage were independent prognostic factors. Elevated expression of MUC20 in cells promoted migration and invasion, whereas ShRNA-mediated knockdown inhibited these processes. In addition, Western blotting demonstrated that MUC20-induced invasion was associated with MMP-2, MMP-3, and E-cadherin.ConclusionsCumulatively, MUC20 may serve as an important predictor of recurrence and poor outcome for CRC patients. MUC20 overexpression could enhance migration and invasion abilities of CRC cells. Translation of its roles into clinical practice will need further investigation and additional test validation.


Histopathology | 2016

Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change

Liang Cheng; Darrell D. Davidson; Mingsheng Wang; Antonio Lopez-Beltran; Rodolfo Montironi; Lisha Wang; Puay Hoon Tan; Gregory T. MacLennan; Sean R. Williamson; Shaobo Zhang

To understand more clearly the genetic ontogeny of inverted papilloma of urinary bladder, we analysed telomerase reverse transcriptase (TERT) promoter mutation status in a group of 26 inverted papillomas in comparison with the mutation status of urothelial carcinoma with inverted growth (26 cases), conventional urothelial carcinoma (36 Ta non‐invasive urothelial carcinoma, 35 T2 invasive urothelial carcinoma) and cystitis glandularis (25 cases).


Molecular Carcinogenesis | 2015

Increased androgen receptor gene copy number is associated with TMPRSS2‐ERG rearrangement in prostatic small cell carcinoma

Lisha Wang; Sean R. Williamson; Shaobo Zhang; Jiaoti Huang; Rodolfo Montironi; Darrell D. Davison; Mingsheng Wang; Jorge L. Yao; Antonio Lopez-Beltran; Adeboye O. Osunkoya; Gregory T. MacLennan; Lee Ann Baldridge; Xiang Du; Liang Cheng

Small cell carcinoma of the prostate (PSCC) is a highly aggressive malignancy that often develops in patients previously treated with hormonal therapy for metastatic prostatic acinar adenocarcinoma. The TMPRSS2‐ERG gene rearrangement is highly specific for prostate cancer and shared by PSCC; however, the role of androgen receptor (AR) gene alterations and interaction with TMPRSS2‐ERG rearrangement are incompletely understood in PSCC. Sixty‐one cases of PSCC were examined for AR gene copy number and TMPRSS2‐ERG rearrangement by fluorescence in situ hybridization (FISH) and AR protein expression by immunohistochemistry. Of 61 cases of PSCC, 51% (31/61) demonstrated increased AR gene copy number (FISH+), 54% (33/61) were positive for TMPRSS2‐ERG gene fusion, and 38% (23/61) showed AR protein expression. Of the 31 AR FISH+ cases, 23 also showed TMPRSS2‐ERG gene fusion, and 16 expressed AR protein. Of the 33 cases with TMPRSS2‐ERG fusion, 28 were AR FISH+ or expressed AR protein. Statistically significant correlations were observed between AR gene copy number or AR protein expression and TMPRSS2‐ERG gene fusion (Pu2009=u20090.001 and Pu2009=u20090.03, respectively). In summary, high AR gene copy number emerges during the development of PSCC, often in association with TMPRSS2‐ERG rearrangement. This potential mechanism warrants further study. Improvement will come from understanding the biology of the disease and integrating new therapies into the treatment of this rare and aggressive tumor.

Collaboration


Dive into the Lisha Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory T. MacLennan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge