Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lishan Su is active.

Publication


Featured researches published by Lishan Su.


Journal of Clinical Investigation | 2004

Ink4a/Arf expression is a biomarker of aging

Janakiraman Krishnamurthy; Chad Torrice; Matthew R. Ramsey; Grigoriy I. Kovalev; Khalid Al-Regaiey; Lishan Su; Norman E. Sharpless

The Ink4a/Arf locus encodes 2 tumor suppressor molecules, p16INK4a and Arf, which are principal mediators of cellular senescence. To study the links between senescence and aging in vivo, we examined Ink4a/Arf expression in rodent models of aging. We show that expression of p16INK4a and Arf markedly increases in almost all rodent tissues with advancing age, while there is little or no change in the expression of other related cell cycle inhibitors. The increase in expression is restricted to well-defined compartments within each organ studied and occurs in both epithelial and stromal cells of diverse lineages. The age-associated increase in expression of p16INK4a and Arf is attenuated in the kidney, ovary, and heart by caloric restriction, and this decrease correlates with diminished expression of an in vivo marker of senescence, as well as decreased pathology of those organs. Last, the age-related increase in Ink4a/Arf expression can be independently attributed to the expression of Ets-1, a known p16INK4a transcriptional activator, as well as unknown Ink4a/Arf coregulatory molecules. These data suggest that expression of the Ink4a/Arf tumor suppressor locus is a robust biomarker, and possible effector, of mammalian aging.


Gastroenterology | 2011

A Humanized Mouse Model to Study Hepatitis C Virus Infection, Immune Response, and Liver Disease

Michael L. Washburn; Moses T. Bility; Liguo Zhang; Grigoriy I. Kovalev; Adam Buntzman; Jeffery A. Frelinger; Walter T. Barry; Alexander Ploss; Charles M. Rice; Lishan Su

BACKGROUND & AIMS Studies of hepatitis C virus (HCV) infection, immunopathogenesis, and resulting liver diseases have been hampered by the lack of a small animal model. We developed humanized mice with human immune system and liver tissues to improve the studies of hepatitis C virus pathogenesis and treatment. METHODS To promote engraftment of human hepatocytes, we expressed a fusion protein of the FK506 binding protein (FKBP) and caspase 8 under control of the albumin promoter (AFC8), which induces liver cell death, in Balb/C Rag2(-/-) γC-null mice. Cotransplantation of human CD34(+) human hematopoietic stem cells (HSC) and hepatocyte progenitors into the transgenic mice led to efficient engraftment of human leukocytes and hepatocytes. We then infected these humanized mice (AFC8-hu HSC/Hep) with primary HCV isolates and studied HCV-induced immune responses and liver diseases. RESULTS AFC8-hu HSC/Hep mice supported HCV infection in the liver and generated a human immune T-cell response against HCV. HCV infection induced liver inflammation, hepatitis, and fibrosis, which correlated with activation of stellate cells and expression of human fibrogenic genes. CONCLUSIONS AFC8-hu HSC/Hep mice are a useful model of HCV infection, the immune response, and liver disease because they contain human immune system and liver cells. These mice become infected with HCV, generate a specific immune response against the virus, and develop liver diseases that include hepatitis and fibrosis. This model might also be used to develop therapeutics for HCV infection.


Journal of Biological Chemistry | 2005

The CATERPILLER Protein Monarch-1 Is an Antagonist of Toll-like Receptor-, Tumor Necrosis Factor α-, and Mycobacterium tuberculosis-induced Pro-inflammatory Signals

Kristi L. Williams; John D. Lich; Joseph A. Duncan; William Reed; Prasad Rallabhandi; Chris B. Moore; Sherry Kurtz; V. McNeil Coffield; Mary Ann Accavitti-Loper; Lishan Su; Stefanie N. Vogel; Miriam Braunstein; Jenny P.-Y. Ting

The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) α and Mycobacterium tuberculosis. Monarch-1 reduces NFκB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFκB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFκB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFα, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation.


Nature Cell Biology | 2006

Leukaemic transformation by CALM¿AF10 involves upregulation of Hoxa5 by hDOT1L

Yuki Okada; Qi Jiang; Margot Lemieux; Lucie Jeannotte; Lishan Su; Yi Zhang

Chromosomal translocation is a common cause of leukaemia and the most common chromosome translocations found in leukaemia patients involve the mixed lineage leukaemia (MLL) gene. AF10 is one of more than 30 MLL fusion partners in leukaemia. We have recently demonstrated that the H3K79 methyltransferase hDOT1L contributes to MLL–AF10-mediated leukaemogenesis through its interaction with AF10 (ref. 5). In addition to MLL, AF10 has also been reported to fuse to CALM (clathrin-assembly protein-like lymphoid–myeloid) in patients with T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML). Here, we analysed the molecular mechanism of leukaemogenesis by CALM–AF10. We demonstrate that CALM–AF10 fusion is both necessary and sufficient for leukaemic transformation. Additionally, we provide evidence that hDOT1L has an important role in the transformation process. hDOT1L contributes to CALM–AF10-mediated leukaemic transformation by preventing nuclear export of CALM–AF10 and by upregulating the Hoxa5 gene through H3K79 methylation. Thus, our study establishes CALM–AF10 fusion as a cause of leukaemia and reveals that mistargeting of hDOT1L and upregulation of Hoxa5 through H3K79 methylation is the underlying mechanism behind leukaemia caused by CALM–AF10 fusion.


Journal of Clinical Investigation | 2010

Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition

Soren Johnson; Chad Torrice; Jessica F. Bell; Kimberly B. Monahan; Qi Jiang; Yong Wang; Matthew R. Ramsey; Jian Jin; Kwok-Kin Wong; Lishan Su; Daohong Zhou; Norman E. Sharpless

Total body irradiation (TBI) can induce lethal myelosuppression, due to the sensitivity of proliferating hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation (IR). No effective therapy exists to mitigate the hematologic toxicities of TBI. Here, using selective and structurally distinct small molecule inhibitors of cyclin-dependent kinase 4 (CDK4) and CDK6, we have demonstrated that selective cellular quiescence increases radioresistance of human cell lines in vitro and mice in vivo. Cell lines dependent on CDK4/6 were resistant to IR and other DNA-damaging agents when treated with CDK4/6 inhibitors. In contrast, CDK4/6 inhibitors did not protect cell lines that proliferated independently of CDK4/6 activity. Treatment of wild-type mice with CDK4/6 inhibitors induced reversible pharmacological quiescence (PQ) of early HSPCs but not most other cycling cells in the bone marrow or other tissues. Selective PQ of HSPCs decreased the hematopoietic toxicity of TBI, even when the CDK4/6 inhibitor was administered several hours after TBI. Moreover, PQ at the time of administration of therapeutic IR to mice harboring autochthonous cancers reduced treatment toxicity without compromising the therapeutic tumor response. These results demonstrate an effective method to mitigate the hematopoietic toxicity of IR in mammals, which may be potentially useful after radiological disaster or as an adjuvant to anticancer therapy.


Journal of Experimental Medicine | 2003

The Role of Brg1, a Catalytic Subunit of Mammalian Chromatin-remodeling Complexes, in T Cell Development

Thomas C. Gebuhr; Grigoriy I. Kovalev; Scott J. Bultman; Virginia Godfrey; Lishan Su; Terry Magnuson

Mammalian SWI–SNF-related complexes use brahma-related gene 1 (Brg1) as a catalytic subunit to remodel nucleosomes and regulate transcription. Recent biochemical data has linked Brg1 function to genes important for T lymphocyte differentiation. To investigate the role of SWI–SNF-related complexes in this lineage, we ablated Brg1 function in T lymphocytes. T cell–specific Brg1-deficient mice showed profound thymic abnormalities, CD4 derepression at the double negative (DN; CD4− CD8−) stage, and a developmental block at the DN to double positive (CD4+ CD8+) transition. 5′-bromo-2′-deoxyuridine incorporation and annexin V staining establish a role for Brg1 complexes in the regulation of thymocyte cell proliferation and survival. This Brg1-dependent cell survival is specific for developing thymocytes as indicated by the presence of Brg1-deficient mature T lymphocytes that have escaped the developmental block in the thymus. However, reductions in peripheral T cell populations lead to immunodeficiency and compromised health of mutant mice. These results highlight the importance of chromatin-remodeling complexes at different stages in the development of a mammalian cell lineage.


Journal of Experimental Medicine | 2005

The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis

Xing Chang; Jian Xin Gao; Qi Jiang; Jing Wen; Nick Seifers; Lishan Su; Virginia Godfrey; Tao Zuo; Pan Zheng; Yang Liu

The Scurfy mutation of the FoxP3 gene (FoxP3 sf) in the mouse and analogous mutations in human result in lethal autoimmunity. The mutation of FoxP3 in the hematopoietic cells impairs the development of regulatory T cells. In addition, development of the Scurfy disease also may require mutation of the gene in nonhematopoietic cells. The T cell–extrinsic function of FoxP3 has not been characterized. Here we show that the FoxP3sf mutation leads to defective thymopoiesis, which is caused by inactivation of FoxP3 in the thymic stromal cells. FoxP3 mutation also results in overexpression of ErbB2 in the thymic stroma, which may be involved in defective thymopoiesis. Our data reveal a novel T cell–extrinsic function of FoxP3. In combination, the T cell–intrinsic and –extrinsic defects provide plausible explanation for the severity of the autoimmune diseases in the scurfy mice and in patients who have immunodysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome.


Blood | 2008

FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2−/−γC−/− mice in vivo

Qi Jiang; Liguo Zhang; Rui Wang; Jerry Jeffrey; Michael L. Washburn; Dedeke Brouwer; Selena Barbour; Grigoriy I. Kovalev; Derya Unutmaz; Lishan Su

The role of FoxP3(+)CD4(+) regulatory T (Treg) cells in HIV-1 disease in vivo is poorly understood due to the lack of a robust model. We report here that CD4(+)FoxP3(+) T cells are developed in all lymphoid organs in humanized Rag2(-/-)gammaC(-/-) (DKO-hu HSC) mice and they display both Treg phenotype and Treg function. These FoxP3(+) Treg cells are preferentially infected and depleted by a pathogenic HIV-1 isolate in HIV-infected DKO-hu HSC mice; and depletion of Treg cells is correlated with induction of their apoptosis in vivo. When CD4(+)CD25(+/hi) Treg cells are depleted with the IL-2-toxin fusion protein (denileukin diftitox), HIV-1 infection is significantly impaired. This is demonstrated by reduced levels of productively infected cells in lymphoid organs and lower plasma viremia. Therefore, FoxP3(+) Treg cells are productively infected and play an important role in acute HIV-1 infection in vivo. The DKO-hu HSC mouse will be a valuable model to study human Treg functions and their role in HIV-1 pathogenesis in vivo.


PLOS Pathogens | 2014

Hepatitis B Virus Infection and Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages

Moses T. Bility; Liang Cheng; Zheng Zhang; Yan Luan; Feng Li; Liqun Chi; Liguo Zhang; Zhengkun Tu; Yanhang Gao; Yang-Xin Fu; Junqi Niu; Fu-Sheng Wang; Lishan Su

The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.


PLOS Pathogens | 2007

V3 Loop Truncations in HIV-1 Envelope Impart Resistance to Coreceptor Inhibitors and Enhanced Sensitivity to Neutralizing Antibodies

Meg M. Laakso; Fang Hua Lee; Beth Haggarty; Caroline Agrawal; Katrina M. Nolan; Mark J. Biscone; Josephine Romano; Andrea P. O. Jordan; George J. Leslie; Eric G. Meissner; Lishan Su; James A. Hoxie; Robert W. Doms

The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1) envelope (Env) protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (ΔV1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked to high levels of resistance to these antiviral compounds.

Collaboration


Dive into the Lishan Su's collaboration.

Top Co-Authors

Avatar

Liguo Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Cheng

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Grigoriy I. Kovalev

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Guangming Li

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Qi Jiang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Feng Li

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Zheng Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Peishuang Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jerry Jeffrey

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge