Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisheng Yang is active.

Publication


Featured researches published by Lisheng Yang.


PLOS ONE | 2013

The Cross-Neutralizing Activity of Enterovirus 71 Subgenotype C4 Vaccines in Healthy Chinese Infants and Children

Qunying Mao; Tong Cheng; Fengcai Zhu; Jing-Xin Li; Yiping Wang; Yanping Li; Fan Gao; Lisheng Yang; Xin Yao; Jie Shao; Ningshao Xia; Zhenglun Liang; Junzhi Wang

Background EV71 is one of major etiologic causes of hand-foot-mouth disease (HFMD) and leads to severe neurological complications in young children and infants. Recently inactivated EV71 vaccines have been developed by five manufactures and clinically show good safety and immunogenicity. However, the cross-neutralizing activity of these vaccines remains unclear, and is of particular interest because RNA recombination is seen more frequently in EV71 epidemics. Methodology/Principal Findings In this post-hoc study, sera from a subset of 119 infants and children in two clinical trials of EV71 subgenotype C4 vaccines (ClinicalTrials.gov Identifier: NCT01313715 and NCT01273246), were detected for neutralizing antibody (NTAb) titres with sera from infected patients as controls. Cytopathogenic effect method was employed to test NTAb against EV71 subgenotype B4, B5, C2, C4 and C5, which were prominent epidemic strains worldwide over the past decade. To validate the accuracy of the results, ELISpot assay was employed in parallel to detect NTAb in all the post-vaccine sera. After two-dose vaccination, 49 out of 53 participants in initially seronegative group and 52 out of 53 participants in initially seropositive group showed less than 4-fold differences in NTAb titers against five EV71 strains, whereas corresponding values among sera from pediatric patients recovering from EV71-induced HFMD and subclinically infected participants were 8/8 and 41/43, respectively. The geometric mean titers of participants against five subgenotypes EV71 all grew significantly after vaccinations, irrespective of the baseline NTAb titer. The relative fold increase in antibody titers (NTAb-FI) against B4, B5, C2, and C5 displayed a positive correlation to the NTAb-FI against C4. Conclusions/Significance The results demonstrated broad cross-neutralizing activity induced by two C4 EV71 vaccines in healthy Chinese infants and children. However, the degree of induced cross-protective immunity, and the potential escape evolution for EV71 still need to be monitored and researched in future for these new vaccines.


Theranostics | 2014

Protection against Lethal Enterovirus 71 Challenge in Mice by a Recombinant Vaccine Candidate Containing a Broadly Cross-Neutralizing Epitope within the VP2 EF Loop

Longfa Xu; Delei He; Zhiqun Li; Jun Zheng; Lisheng Yang; Miao Yu; Hai Yu; Yixin Chen; Yuqiong Que; James Wai-Kuo Shih; Gang Liu; Jun Yu Zhang; Qinjian Zhao; Tong Cheng; Ningshao Xia

Human enterovirus 71 (EV71) is the main causative agent of hand, foot, and mouth disease (HFMD) and is associated with several severe neurological complications in the Asia-Pacific region. Here, we evaluated that while passive transfer of neutralizing monoclonal antibody (nMAb) against the VP2 protein protect against lethal EV71 infection in BALB/c mice. Protective nMAb were mapped to residues 141-155 of VP2 by peptide ELISA. High-resolution structural analysis showed that the epitope is part of the VP2 EF loop, which is the “puff” region that forms the “southern rim” of the canyon. Moreover, a three-dimensional structural characterization for the puff region with prior neutralizing epitopes and receptor-binding sites that can serve to inform vaccine strategies. Interestingly, using hepatitis B virus core protein (HBc) as a carrier, we demonstrated that the cross-neutralizing EV71 antibodies were induced, and the VP2 epitope immunized mice serum also conferred 100% in vivo passive protection. The mechanism of in vivo protection conferred by VP2 nMAb is in part attributed to the in vitro neutralizing titer and ability to bind authentic viral particles. Importantly, the anti-VP2(aa141-155) antibodies could inhibit the binding of human serum to EV71 virions showed that the VP2 epitope is immunodominant. Collectively, our results suggest that a broad-spectrum vaccine strategy targeting the high-affinity epitope of VP2 EF loop may elicits effective immune responses against EV71 infection.


PLOS ONE | 2014

Analysis of Cross-Reactive Neutralizing Antibodies in Human HFMD Serum with an EV71 Pseudovirus-Based Assay

Huafei Zhang; Dong An; Wei Liu; Qunying Mao; Jun Jin; Lin Xu; Shiyang Sun; Liping Jiang; Xiaojun Li; Jie Shao; Hongxia Ma; Xueyong Huang; Shijie Guo; Haiying Chen; Tong Cheng; Lisheng Yang; Weiheng Su; Wei Kong; Zhenglun Liang; Chunlai Jiang

Hand, foot and mouth disease, associated with enterovirus 71 (EV71) infections, has recently become an important public health issue throughout the world. Serum neutralizing antibodies are major indicators of EV71 infection and protective immunity. However, the potential for cross-reactivity of neutralizing antibodies for different EV71 genotypes and subgenotypes is unclear. Here we measured the cross-reactive neutralizing antibody titers against EV71 of different genotypes or subgenotypes in sera collected from EV71-infected children and vaccine-inoculated children in a phase III clinical trial (ClinicalTrials.gov Identifier: NCT01636245) using a new pseudovirus-based neutralization assay. Antibodies induced by EV71-C4a were cross-reactive for different EV71 genotypes, demonstrating that C4a is a good candidate strain for an EV71 vaccine. Our study also demonstrated that this new assay is practical for analyses of clinical samples from epidemiological and vaccine studies.


Scientific Reports | 2015

A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71

Longfa Xu; Delei He; Lisheng Yang; Zhiqun Li; Xiangzhong Ye; Hai Yu; Huan Zhao; Shuxuan Li; Lunzhi Yuan; Hongliu Qian; Yuqiong Que; James Wai-Kuo Shih; Hua Zhu; Yimin Li; Tong Cheng; Ningshao Xia

Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops.


Journal of Virological Methods | 2011

Development of an IgM-capture ELISA for Coxsackievirus A16 infection

Feihai Xu; Delei He; Shuizhen He; Bin Wu; Li Guan; Jianjun Niu; Liang Li; Chuan Li; Zuxing Weng; Qiang Yan; Lisheng Yang; Shengxiang Ge; Tong Cheng; Yixin Chen; Jun Zhang; Ningshao Xia

Diagnosis of Coxsackievirus A16 (CA16) infection in China relies mainly on reverse transcription-polymerase chain reaction (RT-PCR) that require expensive equipment and special trained personnel, thus making its wide application in health care settings unlikely. In this study, a novel IgM anti-CA16 assay was developed for the detection of IgM antibodies to CA16 in serum. The responses and diagnostic value of IgM for the CA16 infection were assessed by testing 1970 serum samples. The results showed that sensitivity of IgM test was 84.6% (259/306, 95% CI: 80.1-88.5), and specificity in control subjects and patients with CA16 HFMD was 99.2% (1508/1520, 95% CI: 98.6-99.6) and 90.3% (14/144, 95% CI: 84.2-94.6), respectively. The IgM positive rate reached 56.3% in the sera collected within the first day after onset, increased continuously to 95.3% at day 5 to day 7 after onset, and then reached 100% after more than 8 days. The cross-reaction rate in patients infected with other non-CA16 enteroviruses was 9.7% (14/144). These results suggest that the IgM anti-CA16 assay offers a rapid, convenient, and reliable method to detect acute CA16 infections.


PLOS ONE | 2014

In vivo time-related evaluation of a therapeutic neutralization monoclonal antibody against lethal enterovirus 71 infection in a mouse model.

Zhiqun Li; Longfa Xu; Delei He; Lisheng Yang; Che Liu; Yixin Chen; James Wai-Kuo Shih; Jun Zhang; Qinjian Zhao; Tong Cheng; Ningshao Xia

Enterovirus 71 (EV71) is a neurotropic virus capable of inducing severe neurological symptoms and death. No direct targeting antivirals are useful in the treatment of severe EV71 infection. Because of low toxicity and good specificity, monoclonal antibodies (MAb) are a potential candidate for the treatment of viral infections. Therefore, we developed an EV71-specific conformational MAb with high in vitro cross-neutralization activity to heterologous EV71 subgenotypes. The in vivo treatment experiment at different days post-infection indicated that a single treatment of MAb CT11F9 within day 3 post-infection fully protected mice from morbidity and mortality (0% PBS vs. 100% at 10 µg/g per body weight ***P<0.0001). Immunohistochemical and histological analysis confirmed that CT11F9 significantly prohibited EV71 VP1 expression in various tissues and prevented EV71-induced myonecrosis. Moreover, thrice-treatment at day 4, 5, 6 post-infection was associated with an increased survival rate (18.2% single vs. 50% thrice at 20 µg/g per body weight), and the mice recovered from limb paralysis. Competitive ELISA also confirmed that CT11F9-recognized epitopes were immunodominant in humans. In conclusion, MAb CT11F9 is an ideal candidate to be humanized and used in severe EV71 infection.


Antiviral Research | 2016

A neonatal mouse model for the evaluation of antibodies and vaccines against coxsackievirus A6

Lisheng Yang; Qunying Mao; Shuxuan Li; Fan Gao; Huan Zhao; Yajing Liu; Junkai Wan; Xiangzhong Ye; Ningshao Xia; Tong Cheng; Zhenglun Liang

Coxsackievirus A6 (CA6) can induce atypical hand, foot, and mouth disease, which is characterized by severe rash, onychomadesis and a higher rate of infection in adults. Increasing epidemiological data indicated that outbreaks of CA6-associated hand, foot, and mouth disease have markedly increased worldwide in recent years. However, the current body of knowledge on the infection, pathogenic mechanism, and immunogenicity of CA6 is still very limited. In this study, we established the first neonatal mouse model for the evaluation of antibodies and vaccines against CA6. The CA6 strain CA6/141 could infect a one-day-old BALB/c mouse through intraperitoneal and intracerebral routes. The infected mice developed clinical symptoms, such as inactivity, wasting, hind-limb paralysis and even death. Pathological examination indicated that CA6 showed special tropism to skeletal muscles and skin, but not to nervous system or cardiac muscles. Infections with CA6 could induce vesicles in the dermis without a rash in mice, and the CA6 antigen was mainly localized in hair follicles. The strong tropism of CA6 to the skin may be related to its severe clinical features in infants. This mouse model was further applied to evaluate the efficacy of a therapeutic antibody and an experimental vaccine against CA6. A potential mAb 1D5 could fully protect mice from a lethal CA6 infection and also showed good therapeutic effects in the CA6-infected mice. In addition, an inactivated CA6 vaccine was evaluated through maternal immunization and showed 100% protection of neonatal mice from lethal CA6 challenge. Collectively, these results indicate that this infection model will be a useful tool in future studies on vaccines and antiviral reagents against CA6.


Virus Research | 2015

Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice

Lisheng Yang; Shuxuan Li; Yajing Liu; Wangheng Hou; Qiaona Lin; Huan Zhao; Longfa Xu; Delei He; Xiangzhong Ye; Hua Zhu; Tong Cheng; Ningshao Xia

Atypical hand, foot, and mouth disease (aHFMD) outbreaks have been frequently reported worldwide in recent years. It is believed that coxsackievirus A6 (CA6) is the major pathogen for aHFMD. Studies regarding CA6 infection are limited and the genetic mechanism for the high pathogenicity of some new CA6 variants is still unclear. Infectious clones are powerful tools for studying the genetic mechanisms of RNA viruses. In this study, we describe the construction of a full-length cDNA clone of CA6 strain TW-2007-00141. The whole genome of CA6 was amplified in a single step and ligated into a plasmid vector through an efficient cloning method, Gibson assembly. The whole genome sequence of CA6 strain TW-2007-00141 was determined and phylogenetic analysis indicated that it shared a high degree of similarity (≥94%) with the CA6 strains found in Taiwan in 2009. The infectious clone of CA6 viruses were recovered by transfection into 293FT cells and showed similar biological properties to the parental virus. Viral particles were purified by CsCl isopycnic centrifugation, and two types of viral particles were observed under transmission electron microscopy. The rescued virus showed high virulence in one-day-old suckling mice. This clone may be useful for establishing animal models for the evaluation of CA6 vaccine efficiency in future.


Clinical and Vaccine Immunology | 2014

Development of an Enzyme-Linked Immunosorbent Spot Assay To Measure Serum-Neutralizing Antibodies against Coxsackievirus B3

Lisheng Yang; Delei He; Min Tang; Zhiqun Li; Che Liu; Longfa Xu; Yixin Chen; Hailian Du; Qinjian Zhao; Jun Zhang; Tong Cheng; Ningshao Xia

ABSTRACT Coxsackievirus B3 (CVB3) is the most common pathogen that induces acute and chronic viral myocarditis in children. The cytopathic effect (CPE)-based neutralization test (Nt-CPE) and the plaque reduction neutralization test (PRNT) are the most common methods for measuring neutralizing antibody titers against CVB3 in blood serum samples. However, these two methods are inefficient for CVB3 vaccine clinical trials, which require the testing of a large number of serum specimens. In this study, we developed an efficient neutralization test based on the enzyme-linked immunospot (Nt-ELISPOT) assay for measuring CVB3-neutralizing antibodies. This modified ELISPOT assay was based on the use of a monoclonal antibody against the viral capsid protein VP1 to detect the cells that are infected with CVB3, which, after immunoperoxidase staining, are counted as spots using an automated ELISPOT analyzer. Using the modified ELISPOT assay, we characterized the infection kinetics of CVB3 and divided the infection process of CVB3 on a cluster of cells into four phases. The stability of the Nt-ELISPOT was then evaluated. We found that over a wide range of infectious doses (102 to 106.5× 50% tissue culture infectious dose [TCID50] per well), the neutralizing titers of the sera were steady as long as they were tested during the log phase or the first half of the stationary phase of growth of the spots. We successfully shortened the testing period from 7 days to approximately 20 h. We also found that there was a good correlation (R2 = 0.9462) between the Nt-ELISPOT and the Nt-CPE assays. Overall, the Nt-ELISPOT assay is a reliable and efficient method for measuring neutralizing antibodies in serum.


Nature Communications | 2017

Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody

Longfa Xu; Qingbing Zheng; Shaowei Li; Maozhou He; Yangtao Wu; Yongchao Li; Rui Zhu; Hai Yu; Qiyang Hong; Jie Jiang; Zizhen Li; Shuxuan Li; Huan Zhao; Lisheng Yang; Wangheng Hou; Wei Wang; Xiangzhong Ye; Jun Zhang; Timothy S. Baker; Tong Cheng; Z. Hong Zhou; Xiaodong Yan; Ningshao Xia

Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.Coxsackievirus A6 (CVA6) causes hand, foot and mouth disease in children. Here the authors present the CVA6 procapsid and A-particle cryo-EM structures and identify an immune-dominant neutralizing epitope, which can be exploited for vaccine development.

Collaboration


Dive into the Lisheng Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge