Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lishomwa C. Ndhlovu is active.

Publication


Featured researches published by Lishomwa C. Ndhlovu.


Journal of Experimental Medicine | 2008

Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection

R. Brad Jones; Lishomwa C. Ndhlovu; Jason D. Barbour; Prameet M. Sheth; Aashish R. Jha; Brian R. Long; Jessica C. Wong; Malathy Satkunarajah; Marc Schweneker; Joan M. Chapman; Gabor Gyenes; Bahareh Vali; Martin D. Hyrcza; Feng Yun Yue; Colin Kovacs; Aref Sassi; Mona Loutfy; Roberta Halpenny; Desmond Persad; Gerald Spotts; Frederick Hecht; Tae-Wook Chun; Joseph M. McCune; Rupert Kaul; James M. Rini; Douglas F. Nixon; Mario A. Ostrowski

Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1–infected individuals to a mean of 49.4 ± SD 12.9% of CD8+ T cells expressing Tim-3 in HIV-1–infected chronic progressors versus 28.5 ± 6.8% in HIV-1–uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1–infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4+ T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1–specific CD8+ T cells. Tim-3–expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1–specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1–associated T cell dysfunction.


Journal of Immunology | 2004

Distinct Roles for the OX40-OX40 Ligand Interaction in Regulatory and Nonregulatory T Cells

Ikuo Takeda; Shoji Ine; Nigel Killeen; Lishomwa C. Ndhlovu; Kazuko Murata; Susumu Satomi; Kazuo Sugamura; Naoto Ishii

The OX40 (CD134) molecule is induced primarily during T cell activation and, as we show in this study, is also expressed on CD25+CD4+ regulatory T (Treg) cells. A necessary role for OX40 in the development and homeostasis of Treg cells can be inferred from the reduced numbers of the cells present in the spleens of OX40-deficient mice, and their elevated numbers in the spleens of mice that overexpress the OX40 ligand (OX40L). The homeostatic proliferation of Treg cells following transfer into lymphopenic mice was also found to be potentiated by the OX40-OX40L interaction. Suppression of T cell responses by Treg cells was significantly impaired in the absence of OX40, indicating that, in addition to its homeostatic functions, OX40 contributes to efficient Treg-mediated suppression. However, despite this, we found that CD25−CD4+ T cells became insensitive to Treg-mediated suppression when they were exposed to OX40L-expressing cells, or when they were treated with an agonistic OX40-specific mAb. OX40 signaling could also abrogate the disease-preventing activity of Treg cells in an experimental model of inflammatory bowel disease. Thus, although the data reveal important roles for OX40 signaling in Treg cell development, homeostasis, and suppressive activity, they also show that OX40 signals can oppose Treg-mediated suppression when they are delivered directly to Ag-engaged naive T cells.


Journal of Clinical Investigation | 2009

Tregs control the development of symptomatic West Nile virus infection in humans and mice

Marion C. Lanteri; Katie M. O’Brien; Whitney E. Purtha; Mark J. Cameron; Jennifer M. Lund; Rachel E. Owen; John W. Heitman; Brian Custer; Dale F. Hirschkorn; Leslie H. Tobler; Nancy Kiely; Harry E. Prince; Lishomwa C. Ndhlovu; Douglas F. Nixon; Hany Kamel; David J. Kelvin; Michael P. Busch; Alexander Y. Rudensky; Michael S. Diamond; Philip J. Norris

West Nile virus (WNV) causes asymptomatic infection in most humans, but for undefined reasons, approximately 20% of immunocompetent individuals develop West Nile fever, a potentially debilitating febrile illness, and approximately 1% develop neuroinvasive disease syndromes. Notably, since its emergence in 1999, WNV has become the leading cause of epidemic viral encephalitis in North America. We hypothesized that CD4+ Tregs might be differentially regulated in subjects with symptomatic compared with those with asymptomatic WNV infection. Here, we show that in 32 blood donors with acute WNV infection, Tregs expanded significantly in the 3 months after index (RNA+) donations in all subjects. Symptomatic donors exhibited lower Treg frequencies from 2 weeks through 1 year after index donation yet did not show differences in systemic T cell or generalized inflammatory responses. In parallel prospective experimental studies, symptomatic WNV-infected mice also developed lower Treg frequencies compared with asymptomatic mice at 2 weeks after infection. Moreover, Treg-deficient mice developed lethal WNV infection at a higher rate than controls. Together, these results suggest that higher levels of peripheral Tregs after infection protect against severe WNV disease in immunocompetent animals and humans.


Blood | 2012

Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity

Lishomwa C. Ndhlovu; Sandra Lopez-Verges; Jason D. Barbour; Richard Bradley Jones; Aashish R. Jha; Brian R. Long; Schoeffler Ec; Tsuyoshi Fujita; Douglas F. Nixon; Lewis L. Lanier

Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.


Journal of Virology | 2008

Conferral of Enhanced Natural Killer Cell Function by KIR3DS1 in Early Human Immunodeficiency Virus Type 1 Infection

Brian R. Long; Lishomwa C. Ndhlovu; Jorge R. Oksenberg; Lewis L. Lanier; Frederick Hecht; Douglas F. Nixon; Jason D. Barbour

ABSTRACT A flurry of recent reports on the role of activating and inhibitory forms of the killer cell immunoglobulin-like receptors (KIR) in natural killer (NK) cell activity against human immunodeficiency virus type 1 (HIV-1) have yielded widely divergent results. The role of the activating NK receptor encoded by the KIR3DS1 allele and its putative ligands, members of the HLA class I Bw4Ile80 cluster, in early HIV-1 disease is controversial. We selected 60 treatment-naïve adults for study from the OPTIONS cohort of individuals with early HIV-1 infection in San Francisco. We performed NK cell functional assays measuring gamma interferon (IFN-γ) and CD107a expression by NK cells in the unstimulated state and after stimulation by the major histocompatibility complex class I-deficient 721.221 B-lymphoblastoid cell line. In addition, we measured CD38 expression (a T-cell activation marker) on T and NK cells. Persons who have at least one copy of the KIR3DS1 gene had higher IFN-γ and CD107a expression in the unstimulated state compared to those who do not possess this gene. After stimulation, both groups experienced a large induction of IFN-γ and CD107a, with KIR3DS1 carriers achieving a greater amount of IFN-γ expression. Differences in effector activity correlating with KIR3DS1 were not attributable to joint carriage of HLA Bw4Ile80 and KIR3DS1. We detected a partial but not complete dependence of KIR3DS1 on the members of B*58 supertype (B*57 and B*58) leading to higher NK cell function. Possessing KIR3DS1 was associated with lower expression of CD38 on both CD8+ T and NK cells and with a loss or weakening of the known strong associations between CD8+ T-cell expression of CD38 mean fluorescence intensity and the HIV-1 viral load. We observed that possessing KIR3DS1 was associated with higher NK cell effector functions in early HIV-1 disease, despite the absence of HLA Bw4Ile80, a putative ligand of KIR3DS1. Carriage of KIR3DS1 was associated with diminished CD8+ T-cell activation, as determined by expression of CD38, and a disruption of the traditional relationship between viral load and activation in HIV-1 disease, which may lead to better clinical outcomes for these individuals.


PLOS Pathogens | 2007

T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection

Keith E. Garrison; R. Brad Jones; Duncan A. Meiklejohn; Naveed Anwar; Lishomwa C. Ndhlovu; Joan M. Chapman; Ann L. Erickson; Ashish Agrawal; Gerald Spotts; Frederick Hecht; Seth Rakoff-Nahoum; Jack Lenz; Mario A. Ostrowski; Douglas F. Nixon

Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design.


Journal of Leukocyte Biology | 2008

FOXP3 expressing CD127lo CD4+ T cells inversely correlate with CD38+ CD8+ T cell activation levels in primary HIV-1 infection.

Lishomwa C. Ndhlovu; Christopher P. Loo; Gerald Spotts; Douglas F. Nixon; Frederick Hecht

During the course of HIV‐1 infection, the status of immune activation has been determined to be a powerful indicator of disease progression. The immune system has adopted self‐regulatory mechanisms to counterbalance undesirable immune responses. CD25+CD4+ T regulatory (Treg) cells that express the transcription regulator, forkhead box P3 (FOXP3), play an important role in this immunosuppression. Using a combination of Treg cell discriminatory markers (FOXP3, CD25, CD127), we predicted that an expansion of Treg cell subsets would negatively correlate with immune activation during the early stages of HIV‐1 infection. We report that FOXP3+CD127lo expressing CD4+ T cells increases in primary HIV‐1 infection over time. Furthermore, the FOXP3+CD127lo CD4+ T cells may, in fact, reduce the levels of T cell activation following primary infection. It is interesting that the positive correlation between FOXP3+CD127lo CD4+ and CD25+CD127lo CD4+ T cells noted in HIV‐uninfected persons is not only lost but may also be reversed in early, chronic HIV‐1 infection. Unlike FOXP3+CD127lo CD4+, the level of FOXP3+CD25+CD127lo CD4+ T cells did not correlate with T cell activation, suggesting that these cells were not effective in reducing T cell activation. These observations suggest that different Treg populations may have different effects on reducing immune activation in HIV‐1 infection and that the FOXP3+CD127lo CD4+ T cell population may be particularly important in limiting immune activation.


AIDS | 2008

Suppression of HIV-1 plasma viral load below detection preserves IL-17 producing T cells in HIV-1 infection

Lishomwa C. Ndhlovu; Joan M. Chapman; Aashish R. Jha; Jennifer E. Snyder-Cappione; Moraima Pagán; Fabio E. Leal; Brigid S Boland; Philip J. Norris; Michael G. Rosenberg; Douglas F. Nixon

IL-17 is proinflammatory cytokine secreted by a unique CD4+ T (Th17) cell subset and proposed to play a role in host defense. We hypothesized that Th17 cells are lost in HIV-1 infection. HIV-1-infected children with plasma viremia below 50 copies/ml had IL-17 production, whereas those with detectable viremia had minimal secretion. These results imply viral-mediated destruction or impairment of Th17 cells and argue for complete suppression of viremia for reconstitution of Th17 cells.


Blood | 2009

Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4

Jeffrey M. Milush; Brian R. Long; Jennifer E. Snyder-Cappione; Amedeo Cappione; Vanessa A. York; Lishomwa C. Ndhlovu; Lewis L. Lanier; Jakob Michaëlsson; Douglas F. Nixon

The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.


PLOS Pathogens | 2016

TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection.

Glen M. Chew; Tsuyoshi Fujita; Gabriela M. Webb; Benjamin J. Burwitz; Helen L. Wu; Jason S. Reed; Katherine B. Hammond; Kiera L. Clayton; Naoto Ishii; Mohamed Abdel-Mohsen; Teri Liegler; Brooks I. Mitchell; Frederick Hecht; Mario A. Ostrowski; Cecilia M. Shikuma; Scott G. Hansen; Mark Maurer; Alan J. Korman; Steven G. Deeks; Jonah B. Sacha; Lishomwa C. Ndhlovu

HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.

Collaboration


Dive into the Lishomwa C. Ndhlovu's collaboration.

Top Co-Authors

Avatar

Douglas F. Nixon

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Jason D. Barbour

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Cecilia Shikuma

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Philip J. Norris

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen M. Chew

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Beau K. Nakamoto

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheila M. Keating

Systems Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge