Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lister Staveley-Smith is active.

Publication


Featured researches published by Lister Staveley-Smith.


Monthly Notices of the Royal Astronomical Society | 2011

The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant

Florian Beutler; Chris Blake; Matthew Colless; D. Heath Jones; Lister Staveley-Smith; Lachlan Campbell; Quentin A. Parker; Will Saunders; Fred G. Watson

We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a baryon acoustic oscillation (BAO) signal at 105h −1 Mpc. The 6dFGS BAO detection allows us to constrain the distance–redshift relation at zeff = 0.106. We achieve a distance measure of DV (zeff) = 457 ± 27 Mpc and a measurement of the distance ratio, rs(zd)/DV (zeff) = 0.336 ± 0.015 (4.5 per cent precision), where rs(zd) is the sound horizon at the drag epoch zd .T he loweffective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H0 = 67 ± 3.2 km s −1 Mpc −1 (4.8 per cent precision) that depends only on theWilkinson Microwave Anisotropy Probe-7 (WMAP-7) calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H0 can be used to break the degeneracy between the dark energy equation of state parameter w and H0 in the cosmic microwave background data. We determine that w =− 0.97 ± 0.13, using only WMAP-7 and BAO data from both 6dFGS and Percival et al. (2010). We also discuss predictions for the large-scale correlation function of two future wide-angle surveys: the Wide field ASKAP L-band Legacy All-sky Blind surveY (WALLABY) blind H I survey (with the Australian Square Kilometre Array Pathfinder, ASKAP) and the proposed Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae (TAIPAN) all-southern-sky optical galaxy survey with the UK Schmidt Telescope. We find that both surveys are very likely to yield detections of the BAO peak, making WALLABY the first radio galaxy survey to do so. We also predict that TAIPAN has the potential to constrain the Hubble constant with 3 per cent precision.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release

Simon P. Driver; D. T. Hill; Lee S. Kelvin; Aaron S. G. Robotham; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Loveday; J. A. Peacock; E. Andrae; Joss Bland-Hawthorn; S. Brough; Michael J. I. Brown; Ewan Cameron; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; N. J. G. Cross; R. De Propris; S. Dye; Michael J. Drinkwater; S. Ellis; Alister W. Graham; M. W. Grootes; M. L. P. Gunawardhana; D. H. Jones; E. van Kampen

The Galaxy and Mass Assembly (GAMA) survey has been operating since 2008 February on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R ≈ 1300 for 120 862 Sloan Digital Sky Survey selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 × 4 deg2 to limiting fluxes of rpet < 19.4, rpet < 19.8 and rpet <19.4 mag, respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 yr, additional image analysis products (including ugrizYJHK photometry, S´ersic profiles and photometric redshifts), observing mask and construction of our core survey catalogue (GamaCore). From this we create three science-ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (2008 February to April); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA Team and collaborators; and GamaCore-AtlasSV containing year 1, 2 and 3 data matched to Herschel-ATLAS science demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/


The Astronomical Journal | 2006

Spitzer survey of the large magellanic cloud: Surveying the agents of a Galaxy's evolution (SAGE). I. Overview and initial results

Margaret M. Meixner; Karl D. Gordon; Remy Indebetouw; Joseph L. Hora; Barbara A. Whitney; R. D. Blum; William T. Reach; Jean Philippe Bernard; Marilyn R. Meade; B. L. Babler; C. W. Engelbracht; B.-Q. For; Karl Anthony Misselt; Uma P. Vijh; Claus Leitherer; Martin Cohen; Ed B. Churchwell; F. Boulanger; Jay A. Frogel; Yasuo Fukui; J. S. Gallagher; Varoujan Gorjian; Jason Harris; Douglas M. Kelly; Akiko Kawamura; So Young Kim; William B. Latter; S. Madden; Ciska Markwick-Kemper; Akira Mizuno

We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxys Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGEs point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGEs detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.


Monthly Notices of the Royal Astronomical Society | 2004

The HIPASS catalogue - I. Data presentation

Martin Meyer; M. A. Zwaan; R. L. Webster; Lister Staveley-Smith; Emma V. Ryan-Weber; Michael J. Drinkwater; D. G. Barnes; Matt Howlett; Virginia A. Kilborn; J. Stevens; Meryl Waugh; Michael Pierce; R. Bhathal; W. J. G. de Blok; Michael John Disney; Ron Ekers; Kenneth C. Freeman; Diego Garcia; Brad K. Gibson; J. Harnett; P. A. Henning; Helmut Jerjen; M. J. Kesteven; Patricia M. Knezek; Baerbel Koribalski; S. Mader; M. Marquarding; Robert F. Minchin; J. O'Brien; Tom Oosterloo

The H I Parkes All-Sky Survey (HIPASS) catalogue forms the largest uniform catalogue of H I sources compiled to date, with 4315 sources identified purely by their H I content. The catalogue data comprise the southern region δ< + 2 ◦ of HIPASS, the first blind H I survey to cover the entire southern sky. The rms noise for this survey is 13 mJy beam −1 and the velocity range is −1280 to 12 700 km s −1 . Data search, verification and parametrization methods are discussed along with a description of measured quantities. Full catalogue data are made available to the astronomical community including positions, velocities, velocity widths, integrated fluxes and peak flux densities. Also available are on-sky moment maps, position‐velocity moment maps and spectra of catalogue sources. A number of local large-scale features are observed in the space distribution of sources, including the super-Galactic plane and the Local Void. Notably, large-scale structure is seen at low Galactic latitudes, a region normally obscured at optical wavelengths.


The Astrophysical Journal | 1998

An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud

Sungeun Kim; Lister Staveley-Smith; Michael A. Dopita; Kenneth C. Freeman; Robert J. Sault; Mike J. Kesteven; David J. McConnell

We present the results of an H I aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact Array (ATCA). The resolution of the mosaicked images is 10 (15 pc, using a distance to the LMC of 50 kpc). This mosaic, with a spatial resolution 15 times higher than that which had been previously obtained, emphasizes the turbulent and fractal structure of the ISM on the small scale, resulting from the dynamical feedback of the star formation processes with the ISM. The structure of the neutral atomic ISM in the LMC is dominated by H I filaments combined with numerous shells and holes. On the large scale, the H I disk appears to be remarkably symmetric and to have a well-organized and orderly, if somewhat complex, rotational field. The bulk of the H I resides in a disk 7.3 kpc in diameter. The mass of the disk component of the LMC is 2.5 × 109 M☉, and the upper limit to all mass within a radius of 4 kpc is ~3.5 × 109 M☉.


Publications of the Astronomical Society of Australia | 1996

The Parkes 21 cm Multibeam Receiver

Lister Staveley-Smith; Warwick E. Wilson; Trevor S. Bird; M. J. Disney; R. D. Ekers; Kenneth C. Freeman; R. F. Haynes; Malcom W. Sinclair; Roberta Vaile; R. L. Webster; A. E. Wright

Several extragalactic H I surveys using a λ 21 cm 13-beam focal plane array will begin in early 1997 using the Parkes 64 m telescope. These surveys are designed to detect efficiently nearby galaxies that have failed to be identified optically because of low optical surface brightness or high optical extinction. We discuss scientific and technical aspects of the multibeam receiver, including astronomical objectives, feed, receiver and correlator design and data acquisition. A comparison with other telescopes shows that the Parkes multibeam receiver has significant speed advantages for any large-area λ 21 cm galaxy survey in the velocity range range 0–14000 km s −1 .


The Astrophysical Journal | 2003

The Magellanic Stream, high-velocity clouds and the sculptor group

Mary E. Putman; Lister Staveley-Smith; Kenneth C. Freeman; B. K. Gibson; David G. Barnes

The Magellanic Stream is a 100° × 10° filament of gas that lies within the Galactic halo and contains ~2 × 108 M☉ of neutral hydrogen. In this paper we present data from the H I Parkes All Sky Survey (HIPASS) in the first complete survey of the entire Magellanic Stream and its surroundings. We also present a summary of the reprocessing techniques used to recover large-scale structure in the Stream. The substantial improvement in spatial resolution and angular coverage compared to previous surveys reveals a variety of prominent features, including bifurcation along the main Stream filament; dense, isolated clouds that follow the entire length of the Stream; head-tail structures; and a complex filamentary web at the head of the Stream where gas is being freshly stripped away from the Small Magellanic Cloud and the Bridge. Debris that appears to be of Magellanic origin extends out to 20° from the main Stream filaments. The Magellanic Stream has a velocity gradient of 700 km s-1 from the Clouds to the tail of the Stream, ~390 km s-1 greater than that due to Galactic rotation alone, therefore implying a noncircular orbit. The dual filaments comprising the Stream are likely to be relics from gas stripped separately from the Magellanic Bridge and the SMC. This implies that (1) the Bridge is somewhat older than conventionally assumed; and (2) the Clouds have been bound together for at least one or two orbits. The transverse velocity gradient of the Stream also appears to support long-term binary motion of the Clouds. A significant number of the most elongated cataloged Stream clouds (containing ~1% of the Stream mass) have position angles aligned along the Stream. This suggests the presence of shearing motions within the Stream, arising from tidal forces or interaction with the tenuous Galactic halo. As previously noted, clouds within one region of the Stream, along the sight line to the less distant half (southern half on the sky) of the Sculptor Group, show anomalous properties. There are more clouds along this sight line than any other part of the Stream, and their velocity distribution significantly deviates from the gradient along the Stream. We argue that this deviation could be due to a combination of halo material, and not to distant Sculptor clouds, based on a spatial and kinematic comparison between the Sculptor Group galaxies and the anomalous clouds and the lack of cloud detection in the northern half of the group. This result has significant implications for the hypothesis that there might exist distant, massive high-velocity clouds within the Local Group. Cataloged clouds within the Magellanic Stream do not have a preferred scale size. Their mass spectrum f(M) M and column density spectrum f(N) N are steep compared with Lyα absorbers and galaxies, and similar to the anomalous clouds along the Sculptor Group sight line.


The Astrophysical Journal | 2009

EVIDENCE FOR A NONUNIFORM INITIAL MASS FUNCTION IN THE LOCAL UNIVERSE

Gerhardt R. Meurer; O. I. Wong; J. H. Kim; D.J. Hanish; Timothy M. Heckman; Jessica K. Werk; Joss Bland-Hawthorn; Michael A. Dopita; M. A. Zwaan; B. Koribalski; Mark Seibert; David Allan Thilker; Henry C. Ferguson; R. L. Webster; Mary E. Putman; Patricia M. Knezek; Marianne T. Doyle; Michael J. Drinkwater; Charles G. Hoopes; Virginia A. Kilborn; Martin Meyer; Emma V. Ryan-Weber; Ryan Christopher Smith; Lister Staveley-Smith

Many of the results in modern astrophysics rest on the notion that the initial mass function (IMF) is universal. Our observations of a sample of H i selected galaxies in the light of Hα and the far-ultraviolet (FUV) challenge this result. The extinction-corrected flux ratio FHα/f FUV from these two tracers of star formation shows strong correlations with the surface brightness in Hα and the R band: low surface brightness (LSB) galaxies have lower FHα/f FUV ratios compared to high surface brightness galaxies as well as compared to expectations from equilibrium models of constant star formation rate (SFR) using commonly favored IMF parameters. Weaker but significant correlations of FHα/f FUV with luminosity, rotational velocity, and dynamical mass as well as a systematic trend with morphology, are found. The correlated variations of FHα/f FUV with other global parameters are thus part of the larger family of galaxy scaling relations. The FHα/f FUV correlations cannot be due to residual extinction correction errors, while systematic variations in the star formation history (SFH) cannot explain the trends with both Hα and R surface brightness nor with other global properties. The possibility that LSB galaxies have a higher escape fraction of ionizing photons seems inconsistent with their high gas fraction, and observations of color–magnitude diagrams (CMDs) of a few systems which indicate a real deficit of O stars. The most plausible explanation for the correlations is the systematic variations of the upper mass limit Mu and/or the slope γ which define the upper end of the IMF. We outline a scenario of pressure driving the correlations by setting the efficiency of the formation of the dense star clusters where the highest mass stars preferentially form. Our results imply that the SFR measured in a galaxy is highly sensitive to the tracer used in the measurement. A nonuniversal IMF would also call into question the interpretation of metal abundance patterns in dwarf galaxies as well as SFHs derived from CMDs.


The Astrophysical Journal | 2004

A NEW LOOK AT THE KINEMATICS OF NEUTRAL HYDROGEN IN THE SMALL MAGELLANIC CLOUD

Snežana Stanimirović; Lister Staveley-Smith; Paul A. Jones

We have used the latest H I observations of the Small Magellanic Cloud (SMC), obtained with the Australia Telescope Compact Array and the Parkes telescope, to reexamine the kinematics of this dwarf irregular galaxy. A large velocity gradient is found in the H I velocity field, with a significant symmetry in isovelocity contours, suggestive of a differential rotation. A comparison of H I data with the predictions from tidal models for the SMC evolution suggests that the central region of the SMC corresponds to the central disklike or barlike component left from the rotationally supported SMC disk prior to its last two encounters with the Large Magellanic Cloud. In this scenario, the velocity gradient is expected as a leftover from the original, preencounter angular momentum. We have derived the H I rotation curve and the mass model for the SMC. This rotation curve rapidly rises to about 60 km s-1 up to the turnover radius of ~3 kpc. A stellar mass-to-light ratio of about unity is required to match the observed rotation curve, suggesting that a dark matter halo is not needed to explain the dynamics of the SMC. A set of derived kinematic parameters agrees well with the assumptions used in tidal theoretical models that led to a good reproduction of observational properties of the Magellanic System. The dynamical mass of the SMC, derived from the rotation curve, is 2.4 × 109 M☉.


Monthly Notices of the Royal Astronomical Society | 2003

A new look at the large-scale H I structure of the Large Magellanic Cloud

Lister Staveley-Smith; Sin Kim; Mark R. Calabretta; R. F. Haynes; M. J. Kesteven

We present a Parkes multibeam H i survey of the Large Magellanic Cloud (LMC). This survey, which is sensitive to spatial structure in the range 200 pc ∼ 10 kpc, complements the Australia Telescope Compact survey, which is sensitive to structure in the range 15 pc ∼ 500 pc. With an rms column density sensitivity of 8 ×10 16 cm −2 for narrow lines and 4×10 17 cm −2 for typical linewidths of 40 km s −1 , emission is found to be extensive well beyond the main body of the LMC. Arm-like features extend from the LMC to join the Magellanic Bridge and the Leading Arm, a forward counterpart to the Magellanic Stream. These features, whilst not as dramatic as those in the SMC, appear to have a common origin in the Galactic tidal field, in agreement with recent 2MASS and DENIS results for the stellar population. The diffuse gas which surrounds the LMC, particularly at pa’s 90 ◦ to 330 ◦ , appears to be loosely associated with tidal features, but loosening by the ram pressure of tenuous Galactic halo gas against the outer parts of the LMC cannot be discounted. High-velocity clouds, which lie between the Galaxy and the LMC in velocity and which appear in the UV spectra of some LMC stars, are found to be associated with the LMC if their heliocentric velocity exceeds about +100 km s −1 . They are possibly the product of energetic outflows from the LMC disk. The H i mass of the LMC is found to be (4.8 ± 0.2) × 10 8 M⊙ (for an assumed distance of 50 kpc), substantially more than previous recent measurements.

Collaboration


Dive into the Lister Staveley-Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. J. Kesteven

Australia Telescope National Facility

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Freeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar

B. Koribalski

Australia Telescope National Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Meyer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. D. Ekers

Australia Telescope National Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge