Liu Yingxi
Dalian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liu Yingxi.
Computers & Structures | 1984
Tang Limin; Chen Wanji; Liu Yingxi
Abstract A new, convenient and general method called Quasi-Conforming Element Technique is introduced for Finite Element Formulations in which the strain is discretized in terms of nodal values and then the potential energy is used to obtain stiffness matrix. The Quasi-Conforming Element Technique is a multivariate finite element method so that it includes the compatible, incompatible and hybrid stress model as its special cases. The connection between this technique and Hu-Washizu principle is shown.
Applied Mathematics and Mechanics-english Edition | 2002
Wang Deng-gang; Liu Yingxi; Li Shouju
A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature. Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model. The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regularization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.
Acta Mechanica Sinica | 1990
Liu Yingxi; Tang Limin
A type of 3 node triangular element is constructed by the Quasi-conforming method, which may be used to solve the equation of a type of inverse problem of wave propagation after Laplace transformation Δu−A2u=0. The strains in the element are approximated by an exponential function and the string-net function between neighbouring elements is approximated by one dimensional general solution of the equation. Furthermore the strain field satisfies the equation, and therefore in the derivation of the element formulation, no shape function is needed. In this sense, it is a kind of hybrid element. Compared with the ordinary linear triangular element, the new one features higher precision with coarse meshes. Some numerical tests are presented.
Journal of Computational and Applied Mathematics | 2004
Luo Zhongxuan; Li Fengzhi; Liu Yingxi; Li Yi
Thermal Science | 2011
Yu He; Li Shouju; Liu Yingxi; Chen Changlin
Archive | 1980
Chen Wanji; Liu Yingxi; Tang Limin
Rock and Soil Mechanics | 2007
Liu Yingxi
Chinese journal of rock mechanics and engineering | 2005
Liu Yingxi
Mechanics in Engineering | 2009
Li Sheng; Liu Yingxi; Sun Xiuzhen
Chinese journal of rock mechanics and engineering | 2000
Li Shouju; Liu Yingxi; Wang Deng-gang; Chen Changlin; L I Zheng-Guo