Liubov Volkova
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liubov Volkova.
International Journal of Wildland Fire | 2014
Liubov Volkova; C.P. (Mick) Meyer; Simon Murphy; Thomas Fairman; Fabienne Reisen; Christopher J. Weston
A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.
Functional Plant Biology | 2009
Liubov Volkova; Michael Tausz; Lauren T. Bennett; Erwin Dreyer
Effects of high irradiance and moderate heat on photosynthesis of the tree-fern Dicksonia antarctica (Labill., Dicksoniaceae) were examined in a climate chamber under two contrasting irradiance regimes (900 and 170 µmol photons m-2 s-1) and three sequential temperature treatments (15°C; 35°C; back to 15°C). High irradiance led to decline in predawn quantum yield of photochemistry, Fv/Fm (0.73), maximal Rubisco activity (Vcmax; from 37 to 29 µmol m-2s-1), and electron transport capacity (Jmax; from 115 to 67 µmol m-2 s-1). Temperature increase to 35°C resulted in further decreases in Fv/Fm (0.45) and in chlorophyll bleaching of high irradiance plants, while Vcmax and Jmax were not affected. Critical temperature for thylakoid stability (Tc) of D. antarctica was comparable with other higher plants (c. 47°C), and increases of Tc with air temperature were greater in high irradiance plants. Increased Tc was not associated with accumulation of osmotica or zeaxanthin formation. High irradiance increased the xanthophyll cycle pigment pool (V+A+Z, 91 v. 48 mmol mol-1 chlorophyll-1), de-epoxidation state (56% v. 4%), and α-tocopherol. Temperature increase to 35°C had no effect on V+A+Z and de-epoxidation state in both light regimes, while lutein, β-carotene and α-tocopherols increased, potentially contributing to increased membrane stability under high irradiance.
Australian Journal of Botany | 2009
Liubov Volkova; Lauren T. Bennett; Michael Tausz
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under shade or variable light (intermittent shade) to sudden exposure to high light levels. Steady-state gas exchange as well as dynamic responses of plants to artificial sunflecks indicated that difference in growth light environment had very little effect on the tree ferns’ capacities to utilise and acclimate to prevailing light conditions. Two weeks of exposure to high light levels (short-term acclimation) led to decreases in all photosynthetic parameters and more negative predawn frond water potentials, mostly irrespective of previous growth light environments. After 3months in high light levels (long-term acclimation), D. antarctica fully recovered, while C. australis previously grown under variable light, recovered only partially, suggesting high light level stress effects under the variable light environments for this species.
International Journal of Wildland Fire | 2016
Liubov Volkova; Andrew L. Sullivan; Stephen H. Roxburgh; Christopher J. Weston
Fire managers around the world commonly use visual assessment of forest fuels to aid prediction of fire behaviour and plan for hazard reduction burning. In Australia, fuel hazard assessment guides also allow conversion of visual assessments to indicative fuel loads, which is essential for some rate of spread models and calculation of fireline intensity or emissions. The strength of correlation between fuel hazard and destructively sampled (directly measured) fuel load was tested using a comprehensive dataset of >500 points from across a range of eucalypt forests in Australia. Overall, there was poor correlation between the assigned fuel hazard rating and measured biomass for surface, near-surface and elevated fuel components, with a clear tendency for these systems to under-predict fuel load at low hazard ratings, and over-predict it at high hazard ratings. Visual assessment of surface fuels was not statistically different from a random allocation of hazard level. The considerable overlap in fuel load between hazard ratings at higher ranges suggests the need to reduce the number of hazard classes to provide clearer differentiation of fuel hazard. To accurately assess forest fuel condition, improvements in fuel hazard descriptions and calibration of visual assessment with destructively measured fuels is essential.
Tree Physiology | 2012
Thomas E. Wright; Michael Tausz; Sabine Kasel; Liubov Volkova; Andrew Merchant; Lauren T. Bennett
While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.
Trees-structure and Function | 2010
Liubov Volkova; Lauren T. Bennett; Andrew Merchant; Michael Tausz
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ13C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (Amax, Vcmax, Jmax) and stomatal conductance (gs) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in gs in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.
Journal of Environmental Management | 2018
Liubov Volkova; C.P. (Mick) Meyer; Vanessa Haverd; Christopher J. Weston
The increasing regional and global impact of wildfires on the environment, and particularly on the human population, is becoming a focus of the research community. Both fire behaviour and smoke dispersion models are now underpinning strategic and tactical fire management by many government agencies and therefore model accuracy at regional and local scales is increasingly important. This demands accuracy of all the components of the model systems, biomass fuel loads being among the more significant. Validation of spatial fuels maps at a regional scale is uncommon; in part due to the limited availability of independent observations of fuel loads, and in part due to a focus on the impact of model outputs. In this study we evaluate two approaches for estimating fuel loads at a regional scale and test their accuracy against an extensive set of field observations for the State of Victoria, Australia. The first approach, which assumes that fuel accumulation is an attribute of the vegetation class, was developed for the fire behaviour model Phoenix Rapid-Fire, with apparent success; the second approach applies the Community Atmosphere Biosphere Land Exchange (CABLE) process-based terrestrial biosphere model, implemented at high resolution across the Australian continent. We show that while neither model is accurate over the full range of fine and coarse fuel loads, CABLE biases can be corrected for the full regional domain with a single linear correction, however the classification based Phoenix requires a matrix of factors to correct its bias. We conclude that these examples illustrate that the benefits of simplicity and resolution inherent in classification-based models do not compensate for their lack of accuracy, and that lower resolution but inherently more accurate carbon-cycle models may be preferable for estimating fuel loads for input into smoke dispersion models.
Forest Ecology and Management | 2013
Liubov Volkova; Christopher J. Weston
Environmental and Experimental Botany | 2011
Liubov Volkova; Lauren T. Bennett; Michael Tausz
Forest Ecology and Management | 2015
Liubov Volkova; Christopher J. Weston
Collaboration
Dive into the Liubov Volkova's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs