Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liuwei Xu is active.

Publication


Featured researches published by Liuwei Xu.


Physical Review Letters | 2016

Nonlinear Transition from Mitigation to Suppression of the Edge Localized Mode with Resonant Magnetic Perturbations in the EAST Tokamak

Y. W. Sun; Y. Liang; Yueqiang Liu; Shuai Gu; Xu Yang; W. Guo; Tonghui Shi; M. Jia; L. Wang; B. Lyu; C. Zhou; A.D. Liu; Qing Zang; H. Liu; Nan Chu; Hui-Hui Wang; T. Zhang; J. Qian; Liuwei Xu; Kaiyang He; D. M. Chen; B. Shen; X.Z. Gong; X. Ji; Shouxin Wang; M. Qi; Yong Song; Q.P. Yuan; Zhi-Cai Sheng; Ge Gao

Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs.


Nuclear Fusion | 2015

First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

Fukun Liu; B. J. Ding; J.G. Li; Baonian Wan; Jiafang Shan; M. Wang; L. Liu; L.M. Zhao; M. H. Li; Y. C. Li; Ying Yang; Z.G. Wu; J.Q. Feng; Huaichuan Hu; H. Jia; Y.Y. Huang; W. Wei; M. Cheng; Liuwei Xu; Qing Zang; B. Lyu; S. Y. Lin; Yanmin Duan; J.H. Wu; Y. Peysson; J. Decker; J. Hillairet; A. Ekedahl; Z.P. Luo; J. Qian

A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW–plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1 × 1019 A m−2 W−1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.


Nuclear Fusion | 2006

Power supply for the superconducting TF magnet system of EAST

Xiaoning Liu; Jiafu Jiang; Liuwei Xu; Yanchuan Liao

The experiment advanced superconducting tokamak (EAST) has a high stored energy superconducting toroidal field (TF) magnet system, so a TF power supply and quench protection are required to provide the power for charge and the reliable means for protection discharge of the TF coil stored energy. This paper describes the design of the TF power supply, current control and coil quench protection.


Plasma Physics and Controlled Fusion | 2013

Investigation of ring-like runaway electron beams in the EAST tokamak

R. J. Zhou; L. Q. Hu; E Z Li; Ming Xu; G Q Zhong; Liuwei Xu; S. Y. Lin; J Z Zhang

In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction.


Journal of Instrumentation | 2015

Fast X-ray micro-tomography for low-Z materials

Liuwei Xu; Rongchang Chen; Guohao Du; Honglan Xie; TQ(肖体乔) Xiao

X-ray phase-contrast micro-tomography (XPCMT) is an important method for the non-destructive acquisition of internal information from samples composed of low-Z elements. During the development of XPCMT, its spatial resolution has gradually been improved; however, insufficient attention has been directed towards the improvement of its time resolution. The low time resolution of XPCMT restricts its applications in fast dynamic processes, such as the fermentation process and alloy growth. In this paper, we demonstrate a fast XPCMT method developed by combining the compressed sensing (CS) theory with XPCMT. This method allows for the accurate reconstruction of images using undersampled XPCMT data, thus achieving higher time resolution and simultaneously reducing the dose delivered to the samples; the latter is especially beneficial in medical applications. The CS-XPCMT algorithm was validated using experimental data from two samples, Fructus Foeniculi and a live ant, collected at the X-ray imaging and biomedical application beamline of the Shanghai Synchrotron Radiation Facility. The results for Fructus Foeniculi demonstrate that the CS-XPCMT algorithm yields good reconstruction accuracy for incomplete and undersampled data. Furthermore, the results for the live ant demonstrate that the CS-XPCMT algorithm is capable of performing fast XPCMT and is a potential method for the realisation of dynamic XPCMT, given appropriately upgraded experimental devices.


Plasma Physics and Controlled Fusion | 2013

Study and optimization of lower hybrid wave coupling in the experimental advanced superconducting (EAST) tokamak

E. H. Kong; B J Ding; L. Zhang; L. Liu; C M Qin; X.Z. Gong; G. Xu; Xiaotao Zhang; Z. G. Wu; H. Q. Wang; M. H. Li; W. Wei; Y. C. Li; Liuwei Xu; Jinhua Wu; Zhaoguo He; Jiafang Shan; Fukun Liu; M. Wang; Handong Xu; Y.P. Zhao; L M Zhao; Jianqiang Feng; Yitao Yang; H. Jia; H C Hu; X JWang; D JWu

The results presented in this paper are an extension of our recent (Kong et al 2012 Plasma Phys. Control. Fusion 54 105003) studies on lower hybrid wave (LHW) coupling. By optimizing the shape of the LH grill, the misalignment between the poloidal limiter (PL) and the LH grill is nearly eliminated and the coupling of LHW is improved, especially on the top row, although some discrepancies are still present in the case with low edge density. Density modifications both by LHW and ion cyclotron range of frequency (ICRF) power are studied in EAST. Experimental results show that the edge density modification in front of the LH grill during LHW power depends mainly on the competition between ponderomotive force (PMF) and the ionization of neutral gas, provided by gas puffing and edge recycling. However, the local edge density during ICRF power can be reduced rapidly. Furthermore, such a modification is more obvious with higher ICRF power and the relevant mechanism of density modification by ICRF power can be related to RF sheaths. In addition, another analogous effect of RF sheaths on the coupling of LHW is also investigated, i.e. the density convection induced by Er???B drift. The changes in LHW coupling associated with different ICRF antennas are discussed and it is shown that in some cases the coupling on the lower rows of the LH grill is improved possibly due to magnetic connection between ICRF antennas and the LH grill. The local coupling of LHW can be improved by gas puffing from gas introduction modules (GIM) on both sides of the launcher, but it is difficult to judge which one is more beneficial due to errors in measurements. Experimental results with gas (D2) injection during ICRF power clearly show that the coupling of LHW on the upper rows will be first improved by gas injection on the electron side and the coupling on the lower rows will be effectively improved by gas injection on the ion side. The results are consistent with the mapping of field lines.


Plasma Physics and Controlled Fusion | 2013

Experimental observation of beta-induced Alfvén eigenmodes during strong tearing modes on the EAST tokamak in fast-electron plasmas

Ming Xu; W Chen; L. Q. Hu; R. J. Zhou; G Q Zhong; Tonghui Shi; Liuwei Xu; Y. Zhang; Yubing Sun; S. Y. Lin; B. Shen

Beta-induced Alfv?n eigenmodes (BAEs) during strong tearing modes are investigated on the EAST tokamak systematically, and the relation between the BAE frequencies and plasma parameters such as electron density , ion temperature Ti, the profile of safety factor q(?) or the intensity of (the width of the magnetic island w) is given in detail during the injection of the power of lower hybrid wave (LHW) (or is also accompanied by the injection of ion cyclotron resonance frequency) comprehensively. All the conditions show that the values of BAE frequencies are in agreement with the generalized fishbone-like dispersion relation, and the activities of the BAEs have a strong interaction with the process of magnetic reconnection.The BAEs are formed during the injection of the power of LHW, and disappear immediately when the power of LHW is turned off on the EAST tokamak. The LHW plasmas or the runaway discharge in Ohmic plasmas can increase the population of fast electrons, which plays a role in the activities of BAEs and a possible excitation mechanism for the BAEs during the strong tearing mode activities.


Nuclear Fusion | 2017

Edge localized mode control using n = 1 resonant magnetic perturbation in the EAST tokamak

M. Jia; H.L. Zhao; Ge Gao; W. Guo; Yun Li; D. M. Chen; X. Ji; Y. W. Sun; Hui-Hui Wang; Yueqiang Liu; Kaiyang He; Baonian Wan; Ge Li; T. Zhang; Qing Zang; M. Qi; B. Shen; Shouxin Wang; Tonghui Shi; Liuwei Xu; B. Lyu; Y. Liu; Yong Song; Peng Fu; Q.P. Yuan; Y. Liang; Zhi-Cai Sheng; Lianzhou Wang; X.Z. Gong; J. Qian

A set of in-vessel resonant magnetic perturbation (RMP) coil has been recently installed in EAST. It can generate a range of spectrum, and there is a relatively large window for edge localized mode (ELM) control according to the vacuum field modeling of the edge magnetic island overlapping area. Observation of mitigation and suppression of ELM in slow rotating plasmas during the application of an n = 1 RMP is presented in this paper. Strong ELM mitigation effect is observed in neutral beam injection heating plasmas. The ELM frequency increases by a factor of 5, and the crash amplitude and the particle flux are effectively reduced by a similar factor. Clear density pump-out and magnetic braking effects are observed during the application of RMP. Footprint splitting is observed during ELM mitigation and agrees well with vacuum field modelling. Strong ELM mitigation happens after a second sudden drop of plasma density, which indicates the possible effect due to field penetration of the resonant harmonics near the pedestal top, where the electron perpendicular rotation becomes flat and close to zero after the application of RMP. ELM suppression is achieved in a resonant window during the scan of the n = 1 RMP spectrum in radio-frequency (RF) dominant heating plasmas. The best spectrum for ELM suppression is consistent with the resonant peak of RMP by taking into account of linear magnetohydrodynamics plasma response. There is no mode locking during the application of n = 1 RMP in ELMy H-mode plasmas, although the maximal coil current is applied.


Journal of Instrumentation | 2015

Solid scintillator based neutron fluctuation measurement on EAST tokamak

N. Pu; Y.B. Zhu; G. Q. Zhong; L. Q. Hu; S. Y. Lin; Liuwei Xu

Microsecond level fast temporal resolved neutron flux and its fluctuation measurement system based on three types of solid scintillator detectors has been successfully established on the Experimental Advanced Superconducting Tokamak (EAST) for energetic particle (EP) and magnetohydrodynamics (MHD) instabilities relevant studies. The detector #1, where 50mm thick polyethylene is used for neutron thermalization, is mostly sensitive to thermal neutron. The detector #2 and #3 measure fast D-D neutrons directly with different gamma immunity. Design details together with detector test results with three types of radioisotope sources are presented. The system has been successfully implemented in EAST experiments for neutron and gamma identification. Typical fast MHD fluctuation related EAST experimental results from this system is also presented.


Fusion Engineering and Design | 2006

The design of quench protection of EAST toroidal field power supply system

Liuwei Xu; Xiaoning Liu; Jiafu Jiang; Yanchuan Liao

Collaboration


Dive into the Liuwei Xu's collaboration.

Top Co-Authors

Avatar

J. Qian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Q. Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanchuan Liao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

B. Lyu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiafang Shan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Zang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Y. Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tonghui Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

B. Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kaiyang He

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge