Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liv Ryan is active.

Publication


Featured researches published by Liv Ryan.


Journal of Immunology | 2000

Human Toll-Like Receptor 2 Mediates Monocyte Activation by Listeria monocytogenes, But Not by Group B Streptococci or Lipopolysaccharide

Trude H. Flo; Øyvind Halaas; Egil Lien; Liv Ryan; Giuseppe Teti; Douglas T. Golenbock; Anders Sundan; Terje Espevik

Human Toll like receptor (TLR) 2 has been implicated as a signaling receptor for LPS from Gram-negative bacteria and cell wall components from Gram-positive organisms. In this study, we investigated whether TLR2 can signal cell activation by the heat-killed group B streptococci type III (GBS) and Listeria monocytogenes (HKLM). HKLM, but not GBS, showed a time- and dose-dependent activation of Chinese hamster ovary cells transfected with human TLR2, as measured by translocation of NF-κB and induction of IL-6 production. A mAb recognizing a TLR2-associated epitope (TL2.1) was generated that inhibited IL-6 production from Chinese hamster ovary-TLR2 cells stimulated with HKLM or LPS. The TL2.1 mAb reduced HKLM-induced TNF production from human monocytes by 60%, whereas a CD14 mAb (3C10) reduced the TNF production by 30%. However, coadministrating TL2.1 and 3C10 inhibited the TNF response by 80%. In contrast to this, anti-CD14 blocked LPS-induced TNF production from monocytes, whereas anti-TLR2 showed no inhibition. Neither TL2.1 nor 3C10 affected GBS-induced TNF production. These results show that TLR2 can function as a signaling receptor for HKLM, possibly together with CD14, but that TLR2 is unlikely to be involved in cell activation by GBS. Furthermore, although LPS can activate transfected cell lines through TLR2, this receptor does not seem to be the main transducer of LPS activation of human monocytes. Thus, our data demonstrate the ability of TLR2 to distinguish between different pathogens.


Journal of Leukocyte Biology | 2001

Differential expression of Toll-like receptor 2 in human cells.

Trude H. Flo; Øyvind Halaas; Sverre Helge Torp; Liv Ryan; Egil Lien; Brit Dybdahl; Anders Sundan; Terje Espevik

Human Toll‐like receptor 2 (TLR2) is a receptor for a variety of microbial products and mediates activation signals in cells of the innate immune system. We have investigated expression and regulation of the TLR2 protein in human blood cells and tissues by using two anti‐TLR2 mAbs. Only myelomonocytic cell lines expressed surface TLR2. In tonsils, lymph nodes, and appendices, activated B‐cells in germinal centers expressed TLR2. In human blood, CD14+ monocytes expressed the highest level of TLR2 followed by CD15+ granulocytes, and CD19+ B‐cells, CD3+ T‐cells, and CD56+ NK cells did not express TLR2. The level of TLR2 on monocytes was after 20 h up‐regulated by LPS, GM‐CSF, IL‐1, and IL‐10 and down‐regulated by IL‐4, IFN‐γ, and TNF. On purified granulocytes, LPS, GM‐CSF, and TNF down‐regulated, and IL‐10 modestly increased TLR2 expression after 2 h. These data suggest that TLR2 protein expression in innate immune cells is differentially regulated by inflammatory mediators.


Journal of Biological Chemistry | 2002

Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers.

Trude H. Flo; Liv Ryan; Eicke Latz; Osamu Takeuchi; Brian G. Monks; Egil Lien; Øyvind Halaas; Shizuo Akira; Gudmund Skjåk-Bræk; Douglas T. Golenbock; Terje Espevik

The alginate capsule produced by the human pathogen Pseudomonas aeruginosa is composed mainly of mannuronic acid polymers (poly-M) that have immunostimulating properties. Poly-M shares with lipopolysaccharide the ability to stimulate cytokine production from human monocytes in a CD14-dependent manner. In the present study we examined the role of Toll-like receptor (TLR) 2 and TLR4 in responses to poly-M. Blocking antibodies to TLR2 and TLR4 partly inhibited tumor necrosis factor production induced by poly-M in human monocytes, and further inhibition was obtained by combining the antibodies. By transiently transfecting HEK293 cells, we found that membrane CD14 together with either TLR2 or TLR4/MD-2 could mediate activation by poly-M. Transfection of HEK293 cells with TLR2 and fluorescently labeled TLR4 followed by co-patching of TLR2 with an antibody revealed no association of these molecules on the plasma membrane. However, macrophages from the Tlr4 mutant C3H/HeJ mice and TLR4 knockout mice were completely non-responsive to poly-M, whereas the tumor necrosis factor release from TLR2 knockout macrophages was half of that seen with wild type cells. Taken together the results suggest that both TLR2 and TLR4 are involved in cell activation by poly-M and that TLR4 may be required in primary murine macrophages.


Cell Transplantation | 2001

Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines.

Berit L. Strand; Liv Ryan; Peter In't Veld; Bård Kulseng; Anne Mari Rokstad; Gudmund Skjåk-Bræk; Terje Espevik

Alginate – poly-l-lysine (PLL) microcapsules can be used for transplantation of insulin-producing cells for treatment of type I diabetes. In this work we wanted to study the inflammatory reactions against implanted microcapsules due to PLL. We have seen that by reducing the PLL layer, less overgrowth of the capsule is obtained. By incubating different cell types with PLL and afterwards measuring cell viability with MTT, we found massive cell death at concentrations of PLL higher than 10 μg/ml. Staining with annexin V and propidium iodide showed that PLL induced necrosis but not apoptosis. The proinflammatory cytokine, tumor necrosis factor (TNF), was detected in supernatants from monocytes stimulated with PLL. The TNF response was partly inhibited with antibodies against CD14, which is a well-known receptor for lipopolysaccharide (LPS). Bactericidal permeability increasing protein (BPI) and a lipid A analogue (B-975), which both inhibit LPS, did not inhibit PLL from stimulating monocytes to TNF production. This indicates that PLL and LPS bind to different sites on monocytes, but because they both are inhibited by a p38 MAP kinase inhibitor, they seem to have a common element in the signal transducing pathway. These results suggest that PLL may provoke inflammatory responses either directly or indirectly through its necrosis-inducing abilities. By combining soluble PLL and alginate both the toxic and TNF-inducing effects of PLL were reduced. The implications of these data are to use alginate microcapsules with low amounts of PLL for transplantation purposes.


Carbohydrate Research | 2000

The cytokine stimulating activity of (1→3)-β-d-glucans is dependent on the triple helix conformation

Berit H. Falch; Terje Espevik; Liv Ryan; Bjørn T. Stokke

The immunomodulating properties of comb-like branched (1-->3)-beta-D-glucans scleroglucan, schizophyllan and lentinan depend on branching pattern, molecular weight and higher-order structure. The effect of weight average molecular weight Mw and higher order structure of scleroglucan, on stimulation of human monocytes cultured in vitro to secrete tumor necrosis factor-alpha (TNF-alpha) was investigated. The higher order structures of the scleroglucan samples were determined by electron microscopy. The data showed that the samples with a linear wormlike, triple helical structure with Mw less than 50 x 10(4) g/mol or larger than 110 x 10(4) g/mol stimulated the monocytes more efficiently than samples with Mw in the range (67-110) x 10(4) g/mol. The denaturation of the linear triple helices by NaOH (> 0.25 M), followed by neutralization yielded blends of linear and macrocyclic topologies with concomitant irreversible reduction of the cytokine inducing activity compared with the untreated scleroglucans. The dose-dependent ability to activate monocytes to cytokine production was not restored following annealing of the denatured-renatured samples, despite the fact that electron micrographs revealed similar structures of these annealed samples to the starting material. Pre-incubation of monocytes with antibodies against cluster of differentiation antigens CD14 or CD11b reduced the scleroglucan potency to stimulate TNF-alpha secretion mainly for mAb against CD14 in the presence of serum.


Journal of Immunology | 2014

Cholesterol Crystals Induce Complement-Dependent Inflammasome Activation and Cytokine Release

Eivind O. Samstad; Nathalie Niyonzima; Stig Nymo; Marie Hjelmseth Aune; Liv Ryan; Siril Skaret Bakke; Knut Tore Lappegård; Ole-Lars Brekke; John D. Lambris; Jan Kristian Damås; Eicke Latz; Tom Eirik Mollnes; Terje Espevik

Inflammation is associated with development of atherosclerosis, and cholesterol crystals (CC) have long been recognized as a hallmark of atherosclerotic lesions. CC appear early in the atheroma development and trigger inflammation by NLRP3 inflammasome activation. In this study we hypothesized whether CC employ the complement system to activate inflammasome/caspase-1, leading to release of mature IL-1β, and whether complement activation regulates CC-induced cytokine production. In this study we describe that CC activated both the classical and alternative complement pathways, and C1q was found to be crucial for the activation. CC employed C5a in the release of a number of cytokines in whole blood, including IL-1β and TNF. CC induced minimal amounts of cytokines in C5-deficient whole blood, until reconstituted with C5. Furthermore, C5a and TNF in combination acted as a potent primer for CC-induced IL-1β release by increasing IL-1β transcripts. CC-induced complement activation resulted in upregulation of complement receptor 3 (CD11b/CD18), leading to phagocytosis of CC. Also, CC mounted a complement-dependent production of reactive oxygen species and active caspase-1. We conclude that CC employ the complement system to induce cytokines and activate the inflammasome/caspase-1 by regulating several cellular responses in human monocytes. In light of this, complement inhibition might be an interesting therapeutic approach for treatment of atherosclerosis.


Transplantation | 1999

TRANSPLANTATION OF ALGINATE MICROCAPSULES: GENERATION OF ANTIBODIES AGAINST ALGINATES AND ENCAPSULATED PORCINE ISLET-LIKE CELL CLUSTERS

Bård Kulseng; Gudmund Skjåk-Bræk; Liv Ryan; Arne Andersson; Aileen King; Arild Faxvaag; Terje Espevik

BACKGROUND Microencapsulation of islets of Langherhans in alginate poly-L-lysine capsules provides an effective protection against cell-mediated immune destruction, and ideally should allow the transplantation of islets in the absence of immunosuppression. It has previously been suggested that alginate rich in mannuronic acid (high M) is more immunogenic than alginate rich in guluronic acid (high G). The ability of these alginates to induce an antibody response in the recipient or act as an adjuvant to antibody responses against antigens leaked from the capsule was investigated in the present study. METHODS Empty capsules made from these different types of alginate were transplanted intraperitoneally to Wistar rats or Balb/c mice. In addition, some animals were also injected with bovine serum albumin to assess the ability of the alginates to act as an adjuvant to this antigen. Antibody responses to intraperitoneally transplanted free and microencapsulated fetal porcine islet like cell clusters (ICC) were also evaluated, in animals treated with or without cyclosporine. RESULTS Antibodies against high M-alginate capsules were detected in the sera of mice transplanted with this capsule type. However, this response was not seen after the transplantation of high G capsules. When Wistar rats were used as recipients, no antibody responses were detected against any type of alginate capsules. Neither type of capsule acted as an adjuvant. Antibodies against ICC were present, in rats transplanted with both nonencapsulated and encapsulated ICCs. Administration of cyclosporine could abolish this production of antibodies against ICC. CONCLUSIONS High G-alginate capsules are less immunogenic than high M capsules. Because encapsulation did not protect against the generation of antibodies against ICC, it can be assumed that antigen leakage from the capsules occurs, as no evidence was found for capsules breaking in vivo.


Vaccine | 1994

Characterization of binding and TNF-α-inducing ability of chitosans on monocytes: the involvement of CD14

Marit Otterlei; Kjell M. Vårum; Liv Ryan; Terje Espevik

Chitosans with different chemical composition were found to induce TNF-alpha production from human monocytes. Their ability to induce TNF-alpha was found to be highly dependent on neutral-solubility and molecular weight. Monoclonal antibodies against CD14 inhibited TNF-alpha production from monocytes stimulated with neutral-soluble chitosans. Binding studies indicated that lipopolysaccharides (LPS) and neutral-soluble chitosans share a binding site on monocytes which involves CD14. TNF-alpha production from monocytes stimulated with chitosans was dependent on serum. LPS-binding protein (LBP) enhanced the chitosan-induced TNF-alpha production only to a minor degree, suggesting that serum proteins other than LBP play an important role in the stimulatory effect.


Acta Biomaterialia | 2011

Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model

Anne Mari Rokstad; Ole Lars Brekke; Bjørg Steinkjer; Liv Ryan; Gabriela Kolláriková; Berit L. Strand; Gudmund Skjåk-Bræk; Igor Lacík; Terje Espevik; Tom Eirik Mollnes

Alginate microbeads and microcapsules are presently under evaluation for future cell-based therapy. Defining their inflammatory properties with regard to humans is therefore essential. A lepirudine-based human whole blood model was used as an inflammation predictor by measuring complement and leukocyte stimulation. Alginate microbeads were complement-compatible since they did not activate complement as measured by the soluble terminal complement complex (sTCC), Bb or the anaphylatoxins C3a and C5a. In addition, alginate microbeads were free of surface adherent leukocytes. In contrast, microcapsules containing poly-L-lysine (PLL) induced elevated levels of sTCC, Bb, C3a and C5a, surface active C3 convertase and leukocyte adhesion. The soluble PLL induced elevated levels of sTCC and up-regulated leukocyte CD11b expression. PMCG microcapsules containing poly(methylene-co-guanidine) complexed with sodium alginate and cellulose sulfate triggered a fast sTCC response and C3 deposition. The PMCG microcapsules were still less activating than PLL-containing microcapsules as a function of time. The amounts of anaphylatoxins C3a and C5a were diminished by the PMCG microcapsules, whereas leukocyte adherence demonstrated surface activating properties. We propose the whole blood model as an important tool for measuring bioincompatibility of microcapsules and microbeads for future applications as well as determining the mechanisms leading to inflammatory reactions.


Cell Transplantation | 2002

Microencapsulation of Cells Producing Therapeutic Proteins: Optimizing Cell Growth and Secretion

Anne Mari Rokstad; Synnøve Holtan; Berit L. Strand; Bjørg Steinkjer; Liv Ryan; Bård Kulseng; Gudmund Skjåk-Bræk; Terje Espevik

Microencapsulation of genetically engineered cells may have important applications as delivery systems for therapeutic proteins. However, optimization of the microcapsules with regard to mechanical stability, cell growth, and secretion of proteins is necessary in order to evaluate the future use of this delivery technology. We have explored the growth, survival, and secretion of therapeutic proteins from 293-EBNA cells producing endostatin (293 endo cells) and JJN3 myeloma cells producing hepatocyte growth factor (HGF) that have been embedded in various types of alginate capsules. Parameters that affect capsule integrity such as homogenous and inhomogenous gel cores and addition of an outer poly-l-lysine (PLL)–alginate coating were evaluated in relation to cell functions. When cells were encapsulated, the PLL layer was found to be absolutely required for the capsule integrity. The JJN3 and 293 endo cells displayed completely different growth and distribution patterns of live and dead cells within the microcapsules, as shown by 3D pictures reconstructed from images taken with confocal laser scanning microscopy (CLSM). Encapsulated JJN3 cells showed a bell-shaped growth and HGF secretion curve over a time period of 5 months. The 293 endo cells reached a plateau phase in growth after 23 days postencapsulation; however, after around 30 days a fraction of the microcapsules started to disintegrate. Microcapsule disintegration occurred with time irrespective of capsule and cell type, showing that alginate microcapsules possessing relatively high gel strength are not strong enough to keep proliferating cells within the microcapsules for prolonged time periods. Although this study shows that the stability of an alginate-based cell factory can be increased by a PLL–alginate coating, further improvement is necessary with regard to capsule integrity as well as controlling the cell growth before this technology can be used for therapy.

Collaboration


Dive into the Liv Ryan's collaboration.

Top Co-Authors

Avatar

Terje Espevik

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gudmund Skjåk-Bræk

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bjørg Steinkjer

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Kristian Damås

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Sundan

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nathalie Niyonzima

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Anne Mari Rokstad

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Marie Hjelmseth Aune

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge