Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Livia Basile is active.

Publication


Featured researches published by Livia Basile.


Journal of Pharmacy and Bioallied Sciences | 2011

Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development.

Rosario Pignatello; Teresa Musumeci; Livia Basile; Claudia Carbone; Giovanni Puglisi

Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.


Current Drug Delivery | 2012

Active targeting strategies for anticancer drug nanocarriers.

Livia Basile; Rosario Pignatello; Catherine Passirani

Chemotherapy at present remains the main form of treatment for cancer, though there is no clinically available antineoplastic drug that acts selectively on the tumor mass. For this reason, the scientific research is focused towards the development of novel cancer therapies and drug delivery strategies, like drug targeting, that would enhance the therapeutic efficacy of drugs while reducing their side toxicity. This review describes tree types of nanoparticles used in active targeting for cancer treatment: liposomes, lipid and polymer nanoparticles, and micelles. The opportunities and challenges achieved by the proposed strategies of active targeting have been highlighted, as well as the necessity to conciliate the targeting efficiency of drug nanocarriers with their longevity in the bloodstream.


International Journal of Pharmaceutics | 2012

Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative

Livia Basile; Catherine Passirani; Ngoc-Trinh Huynh; Jérôme Bejaud; Jean-Pierre Benoit; Giovanni Puglisi; Rosario Pignatello

The paper describes sterically stabilized lipid nanocapsules (LNC) and multilamellar liposomes (MLV) coated using a new amphiphilic conjugate of PEG(2000) with a 2-alkyl-lipoamino acid (LAA). A complement activation assay (CH50) and uptake experiments by THP-1 macrophage cells were used to assess in vitro the effectiveness of the PEG-LAA derivative of modifying the surface behavior of nanocarriers. Administered to rats or Swiss mice, respectively, the PEG(2000)-LAA-modified LNC and MLV showed plasma half-lives longer than the corresponding naked carriers. To assess the ability of nanocarriers to specifically reach tumor sites, paclitaxel (PTX)-loaded LNC and MLV were administered subcutaneously to rats implanted with a 9L glioma. Animals treated with saline or naked LNC and MLV underwent a quick expansion of tumor mass, up to a volume of 2000 mm(3) 25 days after the injection of tumor cells. On the contrary, treatment with a PEG-LAA modified LNC carrier reduced the growth of the tumor volume, which did not exceed 1000 mm(3) by day 25. Analogous positive results were obtained with the liposomal systems. The experimental findings confirmed that these new PEG-LAA conjugates allow to obtain sterically stable nanocarriers that behave effectively and in a comparable or even better way than the (phospho)lipid PEG derivatives commercially available.


Drug Delivery | 2009

Chitosan glutamate hydrogels with local anesthetic activity for buccal application.

Rosario Pignatello; Livia Basile; Giovanni Puglisi

Hydrogels for the buccal application of the anesthetic drug lidocaine hydrochloride (LDC) were prepared using chitosan glutamate (CHG), a soluble salt of chitosan, or a binary mixture of CHG and glycerin, at different weight ratios. The in vitro drug release was studied at the pH value of saliva to assess the effect of the different formulations on drug delivery. The anesthetic activity of mucoadhesive LDC-CHG hydrogels was assessed in vivo after application on the buccal mucosa, compared to commercial semisolid formulations containing the same drug. LDC-loaded hydrogels can be proposed for the symptom relief of aphthosis or other painful mouth diseases.


European Journal of Medicinal Chemistry | 2015

Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease.

Belma Zengin Kurt; Isil Gazioglu; Livia Basile; Fatih Sonmez; Tiziana Ginex; Mustafa Kucukislamoglu; Salvatore Guccione

New benzofuranylthiazole derivatives containing the aryl-urea moiety were synthesized and evaluated in vitro as dual acetylcholinesterase (AChE)-butyrylcholinesterase (BuChE) inhibitors. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were assayed. The result showed that all the synthesized compounds exhibited inhibitory activity on both AChE and BuChE with 1-(4-(5-bromobenzofuran-2-yl)thiazol-2-yl)-3-(2-fluorophenyl)urea (e25, IC50 value of 3.85 μM) and 1-(4-iodophenyl)-3-(4-(5-nitrobenzofuran-2-yl)thiazol-2-yl)urea (e38, IC50 value of 2.03 μM) as the strongest inhibitors against AChE and BuChE, respectively. Compound e38 was 8.5-fold more potent than galanthamine. The selectivity index of e25 and e38 was 2.40 and 0.37 against AChE and BuChE, respectively. Compound e2, e4 and e11 (IC50 = 0.2, 0.5 and 1.13 μM, respectively) showed a better ABTS cation radical scavenging ability than the standard quercetin (IC50 = 1.18 μM). Best poses of compounds e38 on BuChE and e25 on AChE indicate that the thiazole ring and the amidic moiety are important sites of interaction with both ChEs. In addition, the benzofuran ring and phenyl ring are anchored to the side chains of both enzymes by π-π(pi-pi) interactions.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2017

Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors

Fatih Sonmez; Belma Zengin Kurt; Isil Gazioglu; Livia Basile; Aydan Dag; Valentina Cappello; Tiziana Ginex; Mustafa Kucukislamoglu; Salvatore Guccione

Abstract New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC50 value of 43 nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130.


Journal of Natural Products | 2015

Identification of 5-Methoxyflavone as a Novel DNA Polymerase-Beta Inhibitor and Neuroprotective Agent against Beta-Amyloid Toxicity

Sara Merlo; Livia Basile; Maria Laura Giuffrida; Maria Angela Sortino; Salvatore Guccione; Agata Copani

Cell-cycle reactivation is a core feature of degenerating neurons in Alzheimers disease (AD) and Parkinsons disease (PD). A variety of stressors, including β-amyloid (Aβ) in the case of AD, can force neurons to leave quiescence and to initiate an ectopic DNA replication process, leading to neuronal death rather than division. As the primary polymerase (pol) involved in neuronal DNA replication, DNA pol-β contributes to neuronal death, and DNA pol-β inhibitors may prove to be effective neuroprotective agents. Currently, specific and highly active DNA pol-β inhibitors are lacking. Nine putative DNA pol-β inhibitors were identified in silico by querying the ZINC database, containing more than 35 million purchasable compounds. Following pharmacological evaluation, only 5-methoxyflavone (1) was validated as an inhibitor of DNA pol-β activity. Cultured primary neurons are a useful model to investigate the neuroprotective effects of potential DNA pol-β inhibitors, since these neurons undergo DNA replication and death when treated with Aβ. Consistent with the inhibition of DNA pol-β, 5-methoxyflavone (1) reduced the number of S-phase neurons and the ensuing apoptotic death triggered by Aβ. 5-Methoxyflavone (1) is the first flavonoid compound able to halt neurodegeneration via a definite molecular mechanism rather than through general antioxidant and anti-inflammatory properties.


Journal of Chemical Information and Modeling | 2014

Computational Comparison of Imidazoline Association with the I2 Binding Site in Human Monoamine Oxidases

Livia Basile; Matteo Pappalardo; Salvatore Guccione; Danilo Milardi; Rona R. Ramsay

Imidazoline ligands in I2-type binding sites in the brain alter monoamine turnover and release. One example of an I2 binding site characterized by binding studies, kinetics, and crystal structure has been described in monoamine oxidase B (MAO B). MAO A also binds imidazolines but has a different active site structure. Docking and molecular dynamics were used to explore how 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) binds to MAO A and to explain why tranylcypromine increases tight binding to MAO B. The energy for 2-BFI binding to MAO A was comparable to that for tranylcypromine-modified MAO B, but the location of 2-BFI in the MAO A could be anywhere in the monopartite substrate cavity. Binding to the tranylcypromine-modified MAO B was with high affinity and in the entrance cavity as in the crystal structure, but the energies of interaction with the native MAO B were less favorable. Molecular dynamics revealed that the entrance cavity of MAO B after tranylcypromine modification is both smaller and less flexible. This change in the presence of tranylcypromine may be responsible for the greater affinity of tranylcypromine-modified MAO B for imidazoline ligands.


Molecules | 2016

Discovery of a New Class of Sortase A Transpeptidase Inhibitors to Tackle Gram-Positive Pathogens: 2-(2-Phenylhydrazinylidene)alkanoic Acids and Related Derivatives

Benedetta Maggio; Demetrio Raffa; Maria Valeria Raimondi; Stella Cascioferro; Fabiana Plescia; Domenico Schillaci; Maria Grazia Cusimano; Ainars Leonchiks; Dmitrijs Zhulenkovs; Livia Basile; Giuseppe Daidone

A FRET-based random screening assay was used to generate hit compounds as sortase A inhibitors that allowed us to identify ethyl 3-oxo-2-(2-phenylhydrazinylidene)butanoate as an example of a new class of sortase A inhibitors. Other analogues were generated by changing the ethoxycarbonyl function for a carboxy, cyano or amide group, or introducing substituents in the phenyl ring of the ester and acid derivatives. The most active derivative found was 3-oxo-2-(2-(3,4dichlorophenyl)hydrazinylidene)butanoic acid (2b), showing an IC50 value of 50 µM. For a preliminary assessment of their antivirulence properties the new derivatives were tested for their antibiofilm activity. The most active compound resulted 2a, which showed inhibition of about 60% against S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538 and S. epidermidis RP62A at a screening concentration of 100 µM.


Biochemical Pharmacology | 2009

TCP-FA4: A derivative of tranylcypromine showing improved blood―brain permeability

Kelly E. Desino; Rosario Pignatello; Salvatore Guccione; Livia Basile; Sabah Ansar; Mary L. Michaelis; Rona R. Ramsay; Kenneth L. Audus

A variety of approaches have been taken to improve the brain penetration of pharmaceutical agents. The amphipathic character of a compound can improve its interaction with the lipid bilayer within cell membranes, and as a result improve permeability. Fatty acid chains or lipoamino acids of various lengths were attached to tranylcypromine (TCP), in an attempt to improve the blood-brain barrier (BBB) permeability by increasing the lipophilicity as well as the amphiphatic character of the drug. TCP-FA4, one of the derivatives containing a four carbon alkyl acid chain, showed the greatest improvement in permeability. This molecule was slightly neuroprotective in a beta-amyloid-induced neurodegeneration assay and may also be capable of upregulating brain derived neurotrophic factor (BDNF), as indicated by cell culture assays using human umbilical vein endothelial cells. Since decreased levels of BDNF are observed in many CNS disorders, and direct injection of BDNF is not a viable option due to its poor permeability across the BBB, small molecules capable of regulating BDNF that also cross the BBB may be an interesting treatment option.

Collaboration


Dive into the Livia Basile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rona R. Ramsay

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge