Lívia Carla de Melo Rodrigues
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lívia Carla de Melo Rodrigues.
Behavioural Brain Research | 2009
Saavedra José Rios Valentim; Aline Vidal Lacerda Gontijo; Mariana Dadalto Peres; Lívia Carla de Melo Rodrigues; Ester Miyuki Nakamura-Palacios
Dopamine (DA) and N-methyl-D-aspartate (NMDA) receptors seem to be critically involved in working memory processing in the medial prefrontal cortex (mPFC). Effects of NMDA receptors blockade on dopamine D1 receptors activation in the mPFC on spatial working memory was investigated. Adult male Wistar rats, well trained in an eight-arm radial maze and bilaterally cannulated in the mPFC, received intracortical administrations of saline (SAL) or SKF-38393 (DA D1 receptor agonist) followed, 10 min later, by MK-801 (non-competitive NMDA receptor antagonist). They were tested in 1 h delayed tasks after 5 min of the second administration. SKF-38393 (0.56 and 1.8 microg) was disruptive to working memory, increasing significantly the number of errors in the 1 h post-delay performance when administered into the mPFC. MK-801, at doses with no significant effects alone (0.32 or 1.0 microg), reduced significantly the disruptive effect of 0.56 microg SKF-38393. These results showed that the disruptive effect of DA D(1) receptors activation in the mPFC on working memory was significantly reduced by an open-channel NMDA receptor blockade, suggesting that the processing of working memory in the mPFC involving DA D1 receptors depend, at least in part, of NMDA receptors activity in this cortical area.
Endocrinology | 2016
Eduardo Merlo; Priscila L. Podratz; Gabriela C. Sena; Julia F.P. de Araújo; Leandro Ceotto Freitas Lima; Izabela Sinara Silva Alves; Letícia Nogueira da Gama-de-Souza; Renan Pelição; Lívia Carla de Melo Rodrigues; Poliane A.A. Brandão; Maria Tereza Weitzel Dias Carneiro; Rita Gomes Wanderley Pires; Cristina Martins-Silva; Tamara A. Alarcon; Leandro Miranda-Alves; Ian Victor Silva; Jones Bernardes Graceli
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Brain Research | 2011
Lívia Carla de Melo Rodrigues; Catarine Lima Conti; Ester Miyuki Nakamura-Palacios
Marijuana (Cannabis sativa) is one of the most widely used illicit drugs in the world. Its use is associated with impairments in cognitive function. We previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component of marijuana, impaired spatial working memory in the radial maze task when injected intracortically (IC) into the medial prefrontal cortex (mPFC) of rats. Here, we used this paradigm to evaluate the involvement of prefrontal dopamine receptors in working memory disruption induced by Δ(9)-THC. Intracortical pre-treatment of animals with either the D(1)- or D(2)-like dopamine receptor antagonists SCH 23390 or clozapine, respectively, significantly reduced the number of errors rats made in the radial maze following treatment with Δ(9)-THC also administered intracortically. These results were obtained in the absence of locomotor impairment, as evidenced by the time spent in each arm a rat visited. Our findings suggest that prefrontal dopamine receptors are involved in Δ(9)-THC-induced disruption of spatial working memory. This interaction between the cannabinoid system and dopamine release in the PFC contributes to new directions in research and to treatments for cognitive dysfunctions associated with drug abuse and dependence.
Behavioural Brain Research | 2015
Lorena B. Areal; Lívia Carla de Melo Rodrigues; Filipe Andrich; Livia S. Moraes; Maria Aparecida Cicilini; Josideia B. Mendonça; Fabrício Souza Pelição; Ester Miyuki Nakamura-Palacios; Cristina Martins-Silva; Rita Gomes Wanderley Pires
Crack-cocaine addiction has increasingly become a public health problem worldwide, especially in developing countries. However, no studies have focused on neurobiological mechanisms underlying the severe addiction produced by this drug, which seems to differ from powder cocaine in many aspects. This study investigated behavioural, biochemical and molecular changes in mice inhaling crack-cocaine, focusing on dopaminergic and endocannabinoid systems in the prefrontal cortex. Mice were submitted to two inhalation sessions of crack-cocaine a day (crack-cocaine group) during 11 days, meanwhile the control group had no access to the drug. We found that the crack-cocaine group exhibited hyperlocomotion and a peculiar jumping behaviour (escape jumping). Blood collected right after the last inhalation session revealed that the anhydroecgonine methyl ester (AEME), a specific metabolite of cocaine pyrolysis, was much more concentrated than cocaine itself in the crack-cocaine group. Most genes related to the endocannabinoid system, CB1 receptor and cannabinoid degradation enzymes were downregulated after 11-day crack-cocaine exposition. These changes may have decreased dopamine and its metabolites levels, which in turn may be related with the extreme upregulation of dopamine receptors and tyrosine hydroxylase observed in the prefrontal cortex of these animals. Our data suggest that after 11 days of crack-cocaine exposure, neuroadaptive changes towards downregulation of reinforcing mechanisms may have taken place as a result of neurochemical changes observed on dopaminergic and endocannabinoid systems. Successive changes like these have never been described in cocaine hydrochloride models before, probably because AEME is only produced by cocaine pyrolysis and this metabolite may underlie the more aggressive pattern of addiction induced by crack-cocaine.
Neuroscience Letters | 2016
Renan Pelição; Matheus C. Santos; Leandro Ceotto Freitas-Lima; Silvana S. Meyrelles; Elisardo C. Vasquez; Ester Miyuki Nakamura-Palacios; Lívia Carla de Melo Rodrigues
Heavy episodic drinking (binging), which is highly prevalent among teenagers, results in oxidative damage. Because the prefrontal cortex (PFC) is not completely mature in adolescents, this brain region may be more vulnerable to the effects of alcohol during adolescence. As endocannabinoids may protect the immature PFC from the harmful effects of high doses of alcohol, this study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on oxidative stress induced by acute or chronic binge alcohol intake in adolescent rats. At 40min after intraperitoneal pre-treatment with URB597 (0.3mg/kg) or vehicle (Veh), ethanol (EtOH; 3 or 6g/kg, intragastrically) or distilled water (DW) was administered in 3 consecutive sessions (acute binging) or 3 consecutive sessions over 4 weeks (chronic binging). Oxidative stress in PFC slices in situ was measured by dihydroethidium fluorescence staining. At the higher EtOH dose (6g/kg), pre-treatment with URB597 significantly reduced (p<0.01) the production of superoxide anions in the PFC after acute (42.8% decrease) and chronic binge EtOH consumption (44.9% decrease) compared with pre-treatment with Veh. As URB597 decreases anandamide metabolism, this evidence shows an antioxidant effect of endocannabinoids to suppress acute and chronic binge alcohol intake-induced oxidative stress in the PFC of adolescent rats.
Acta Neuropsychiatrica | 2014
Lívia Carla de Melo Rodrigues; Pedro H. Gobira; Antônio C. de Oliveira; Renan Pelição; Antônio Lúcio Teixeira; Fabrício A. Moreira; Alline C. Campos
Objective Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. Methods We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. Results In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. Conclusion The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Environmental Science and Pollution Research | 2017
Carolina Falcão Ximenes; Samya Mere Lima Rodrigues; Priscila L. Podratz; Eduardo Merlo; Julia F.P. de Araújo; Lívia Carla de Melo Rodrigues; Juliana Barbosa Coitinho; Dalton Valentim Vassallo; Jones Bernardes Graceli; Ivanita Stefanon
Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000xa0ngxa0Snxa0g−1. The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5xa0μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5xa0μg/kg/day of TBT for 15xa0days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (nxa0=xa010) and TBT (nxa0=xa010) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration–response curves were generated by exposing endothelium-intact samples to NG-nitro-l-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5xa0μg/kg) for 15xa0days induced vascular dysfunction due to oxidative stress and morphological damage and should be considered an important cardiovascular risk factor.
Neurotoxicity Research | 2018
Elisa Fraga Gomes; Ingryd Fortes Souza Lipaus; Cleciane Waldetário Martins; Andrezza Menezes Araújo; Josidéia Barreto Mendonça; Fabrício Souza Pelição; Evandro Carlos Lebarch; Lívia Carla de Melo Rodrigues; Ester Miyuki Nakamura-Palacios
When burning crack cocaine, the pyrolysis of cocaine generates anhydroecgonine methyl ester (AEME). AEME has been shown to be highly neurotoxic but its effects on cognitive function and oxidative stress are still unknown. Thus, this study investigated the effects of AEME on spatial working memory and on parameters of oxidative stress in the prefrontal cortex, hippocampus, and striatum. First, 18 well-trained rats in 8-arm radial maze (8-RM) procedures received acute intracerebroventricular (icv) administration of AEME at doses of 10, 32, or 100xa0μg or saline (SAL) in a counterbalanced order and were tested 5xa0min later in 1-h delayed tasks in the 8-RM. Secondly, separated animals received acute icv administration of AEME at doses of 10 (nxa0=xa05), 32 (nxa0=xa05), or 100xa0μg (nxa0=xa05) or SAL (nxa0=xa05) for analysis of advanced oxidation protein products, thiobarbituric acid, catalase, glutathione peroxidase, and superoxide dismutase. A higher number of errors were seen in the 1-h post-delay performance after AEME 32xa0μg and AEME 100xa0μg when compared to SAL. In the striatum, animals receiving AEME 100xa0μg icv showed increased advanced oxidation protein products levels when compared to 10xa0μg, and also showed increased activity of glutathione peroxidase enzyme when compared to SAL but also comparing to AEME 32xa0μg and AEME 10xa0μg. These results showed that AEME impairs long-term spatial working memory and also induces greater protein oxidation and increased levels of antioxidant enzymes in the striatum.
Frontiers in Pharmacology | 2018
Juliana Cardoso de Souza Custódio; Cleciane Waldetário Martins; Marcelo Di Marcello Valladão Lugon; Lívia Carla de Melo Rodrigues; Suely G. Figueiredo; Ester Miyuki Nakamura-Palacios
This study measured levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) after single (S) and repetitive (R) anodal epidural DC stimulation (eDCS) over the left medial prefrontal cortex (mPFC). Male Wistar rats (n = 4 per group) received single application of sham (S-sham) or anodal eDCS (S-eDCS) (400 μA for 11 min) and had their PFC removed 15, 30, or 60 min later. For repetitive brain stimulation, rats received sham (R-sham) or anodal eDCS (R-eDCS) once a day, five consecutive days, and their PFC were removed 24 h after the last application. BDNF isoforms levels were measured by Western blot assays. It was observed that animals receiving S-eDCS showed smaller (p < 0.01) levels of BDNF 15 min after stimulation when compared to S-sham, especially in its mature form (mBDNF p < 0.001). Levels of BDNF, including mBDNF, were almost like the S-sham at 30 and 60 min intervals after stimulation, but not proBDNF, which was significantly smaller (p < 0.05) than S-sham at these intervals. After five sessions, BDNF levels were higher in the PFC of R-eDCS animals, notably the proBDNF (p < 0.01) when compared to R-sham. This study showed that levels of BDNF in the PFC, especially the proBDNF, were lower after a single and higher after repetitive anodal eDCS applied over the left mPFC when compared to sham. Therefore, changes of prefrontal BDNF levels may disclose molecular changes underlying the plasticity induced by cortical anodal DC stimulation, which may be opposite if applied in single or multiple sessions.
Frontiers in Pharmacology | 2018
Quézia Silva Anders; Jaisa Klauss; Lívia Carla de Melo Rodrigues; Ester Miyuki Nakamura-Palacios
FosB gene heterodimerizes with Jun family proteins to form activator protein 1 (AP-1) complexes that bind to AP-1 sites in responsive genes to regulate transcription in all cells. The genic expression of FosB seems to be modified after long time exposure to drugs of abuse and these changes may be involved in craving and addicted behavior. This study investigated the FosB mRNA expression in peripheral blood lymphocytes of drug addicted patients using real-time PCR approach. Thus, patients with crack-cocaine use disorder (CUD, n = 10), alcohol use disorder (AUD, n = 12), and healthy non-addicted subjects (CONT, n = 12) were assessed. FosB mRNA expression was reduced by 1.15-fold in CUD and 2.17-fold in AUD when compared to CONT. Hedge’s effect size gs over log FosB/Act was of 0.66 for CUD and of 0.30 for AUD when compared to controls. This study showed that FosB mRNA expression was detected in lymphocytes from peripheral blood for the first time, and it was less expressed in drug addicted patients. This molecular technique may constitute a potential peripheral marker for substance use disorder.