Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lívia Fülöp is active.

Publication


Featured researches published by Lívia Fülöp.


The Journal of Neuroscience | 2009

Amyloid β-Induced Neuronal Hyperexcitability Triggers Progressive Epilepsy

Rimante Minkeviciene; Sylvain Rheims; Marton B. Dobszay; Misha Zilberter; Jarmo Hartikainen; Lívia Fülöp; Botond Penke; Yuri Zilberter; Tibor Harkany; Asla Pitkänen; Heikki Tanila

Alzheimers disease is associated with an increased risk of unprovoked seizures. However, the underlying mechanisms of seizure induction remain elusive. Here, we performed video-EEG recordings in mice carrying mutant human APPswe and PS1dE9 genes (APdE9 mice) and their wild-type littermates to determine the prevalence of unprovoked seizures. In two recording episodes at the onset of amyloid β (Aβ) pathogenesis (3 and 4.5 months of age), at least one unprovoked seizure was detected in 65% of APdE9 mice, of which 46% had multiple seizures and 38% had a generalized seizure. None of the wild-type mice had seizures. In a subset of APdE9 mice, seizure phenotype was associated with a loss of calbindin-D28k immunoreactivity in dentate granular cells and ectopic expression of neuropeptide Y in mossy fibers. In APdE9 mice, persistently decreased resting membrane potential in neocortical layer 2/3 pyramidal cells and dentate granule cells underpinned increased network excitability as identified by patch-clamp electrophysiology. At stimulus strengths evoking single-component EPSPs in wild-type littermates, APdE9 mice exhibited decreased action potential threshold and burst firing of pyramidal cells. Bath application (1 h) of Aβ1–42 or Aβ25–35 (proto-)fibrils but not oligomers induced significant membrane depolarization of pyramidal cells and increased the activity of excitatory cell populations as measured by extracellular field recordings in the juvenile rodent brain, confirming the pathogenic significance of bath-applied Aβ (proto-)fibrils. Overall, these data identify fibrillar Aβ as a pathogenic entity powerfully altering neuronal membrane properties such that hyperexcitability of pyramidal cells culminates in epileptiform activity.


Colloids and Surfaces B: Biointerfaces | 2010

Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment

Andrea Majzik; Lívia Fülöp; Edit Csapó; Ferenc Bogár; Tamás A. Martinek; Botond Penke; G. Bíró; Imre Dékány

Gold nanoparticles (Au NPs) were functionalized by cysteine (Cys), beta-amyloid peptides (Cys(0)Abeta(1-28), Cys(0)Abeta(1-40), Abeta(1-42)) and a pentapeptide fragment (Leu-Pro-Phe-Phe-Asp-OH (LPFFD-OH)). Optical absorption spectra of these systems were recorded and the plasmon resonance maximum values (lambda(max)) of the UV-vis spectra together with the transmission electron microscopy (TEM) images were also analysed. Both TEM images and the appearance of a new absorption band between approximately 720 and 750 nm in the visible spectra of the Au-cysteine and Au-LPFFD-OH systems most probably indicate that upon addition of these molecules to Au NPs-containing aqueous dispersions formation of aggregates is occurred. The wavelength shift between the two observed absorption bands in cysteine- and pentapeptide-modified Au NPs systems are Deltalambda=185 and 193 nm, respectively. These results suggest that the monodisperse spherical gold nanoparticles were arranged to chained structure due to the effect of these molecules. For confirmation of the binding of citrate and cysteine onto the plasmonic metal surface (1)H NMR measurements were also performed. (1)H NMR results may suggest that the citrate layer on the metal surface is replaced by cysteine leading to a formation of organic double layer structure. In the presence of beta-amyloid peptides the aggregation was not observed, especially in the Au-Cys(0)Abeta(1-40) and Au-Abeta(1-42) systems, however compared to the cysteine or LPFFD-OH-containing gold dispersion with Cys(0)Abeta(1-28) measurable less aggregation were occurred. The spectral parameters clearly suggest that Abeta(1-42) can attach or bind to the surface of gold nanoparticles via both the apolar and the N-donors containing side-chains of amino acids and no aggregation in the colloidal gold dispersion was observed.


European Journal of Neuroscience | 2006

Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors

Isaac Shemer; Carl Holmgren; Rogier Min; Lívia Fülöp; Misha Zilberter; Kyle M. Sousa; Tamás Farkas; Wolfgang Härtig; Botond Penke; Nail Burnashev; Heikki Tanila; Yuri Zilberter; Tibor Harkany

Cognitive decline in Alzheimers disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid β protein oligomers (Aβols) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian‐related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age‐dependent Aβ accumulation affects the induction of spike‐timing‐dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Aβ pathology and was virtually absent in mice with advanced Aβ burden. A decreased α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionate (AMPA)/N‐methyl‐d‐aspartate (NMDA) receptor‐mediated current ratio implicated postsynaptic mechanisms underlying Aβ synaptotoxicity. The integral role of Aβols in these processes was verified by showing that pretreatment of cortical slices with Aβ(25−35)ols disrupted spike‐timing‐dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor‐mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Aβols perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Aβ pathology. We propose that soluble Aβols trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors.


Organic Letters | 2010

Building β-Peptide H10/12 Foldamer Helices with Six-Membered Cyclic Side-Chains: Fine-Tuning of Folding and Self-Assembly

István M. Mándity; Lívia Fülöp; Elemér Vass; Gábor K. Tóth; Tamás A. Martinek; Ferenc Fülöp

The ability of the β-peptidic H10/12 helix to tolerate side-chains containing six-membered alicyclic rings was studied. cis-2-Aminocyclohex-3-ene carboxylic acid (cis-ACHEC) residues afforded H10/12 helix formation with alternating backbone configuration. Conformational polymorphism was observed for the alternating cis-ACHC hexamer, where chemical exchange takes place between the major left-handed H10/12 helix and a minor folded conformation. The hydrophobically driven self-assembly was achieved for the cis-ACHC-containing helix which was observed as vesicles ~100 nm in diameter.


Journal of Neurochemistry | 2013

Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer's disease.

Misha Zilberter; Anton Ivanov; Sofya Ziyatdinova; Marat Mukhtarov; Anton Malkov; Alán Alpár; Giuseppe Tortoriello; Catherine H. Botting; Lívia Fülöp; Alex A. Osypov; Asla Pitkänen; Heikki Tanila; Tibor Harkany; Yuri Zilberter

Deficient energy metabolism and network hyperactivity are the early symptoms of Alzheimers disease (AD). In this study, we show that administration of exogenous oxidative energy substrates (OES) corrects neuronal energy supply deficiency that reduces the amyloid‐beta‐induced abnormal neuronal activity in vitro and the epileptic phenotype in AD model in vivo. In vitro, acute application of protofibrillar amyloid‐β1–42 (Aβ1–42) induced aberrant network activity in wild‐type hippocampal slices that was underlain by depolarization of both the neuronal resting membrane potential and GABA‐mediated current reversal potential. Aβ1–42 also impaired synaptic function and long‐term potentiation. These changes were paralleled by clear indications of impaired energy metabolism, as indicated by abnormal NAD(P)H signaling induced by network activity. However, when glucose was supplemented with OES pyruvate and 3‐beta‐hydroxybutyrate, Aβ1–42 failed to induce detrimental changes in any of the above parameters. We administered the same OES as chronic supplementation to a standard diet to APPswe/PS1dE9 transgenic mice displaying AD‐related epilepsy phenotype. In the ex‐vivo slices, we found neuronal subpopulations with significantly depolarized resting and GABA‐mediated current reversal potentials, mirroring abnormalities we observed under acute Aβ1‐42 application. Ex‐vivo cortex of transgenic mice fed with standard diet displayed signs of impaired energy metabolism, such as abnormal NAD(P)H signaling and strongly reduced tolerance to hypoglycemia. Transgenic mice also possessed brain glycogen levels twofold lower than those of wild‐type mice. However, none of the above neuronal and metabolic dysfunctions were observed in transgenic mice fed with the OES‐enriched diet. In vivo, dietary OES supplementation abated neuronal hyperexcitability, as the frequency of both epileptiform discharges and spikes was strongly decreased in the APPswe/PS1dE9 mice placed on the diet. Altogether, our results suggest that early AD‐related neuronal malfunctions underlying hyperexcitability and energy metabolism deficiency can be prevented by dietary supplementation with native energy substrates.


Peptides | 2010

Controlled in situ preparation of Aβ(1–42) oligomers from the isopeptide “iso-Aβ(1–42)”, physicochemical and biological characterization

Zsolt Bozsó; Botond Penke; Dóra Simon; Ilona Laczkó; Gábor Juhász; Viktor Szegedi; Ágnes Kasza; Katalin Soós; Anasztázia Hetényi; Edit Wéber; Hajnalka Tóháti; Mária Csete; Marta Zarandi; Lívia Fülöp

Beta-amyloid (A beta) peptides play a crucial role in the pathology of the neurodegeneration in Alzheimers disease (AD). Biological experiments (both in vitro and animal model studies of AD) require synthetic A beta peptides of standard quality, aggregation grade, neurotoxicity and water solubility. The synthesis of A beta peptides has been difficult, owing to their hydrophobic character, poor solubility and high tendency for aggregation. Recently an isopeptide precursor (iso-A beta(1-42)) was synthesized by Fmoc-chemistry and transformed at neutral pH to A beta(1-42) by O-->N acyl migration in a short period of time. We prepared the same precursor peptide using Boc-chemistry and studied the transformation to A beta(1-42) by acyl migration. The peptide conformation and aggregation processes were studied by several methods (circular dichroism, atomic force and transmission electron microscopy, dynamic light scattering). The biological activity of the synthetic A beta(1-42) was measured by ex vivo (long-term potentiation studies in rat hippocampal slices) and in vivo experiments (spatial learning of rats). It was proven that O-->N acyl migration of the precursor isopeptide results in a water soluble oligomeric mixture of neurotoxic A beta(1-42). These oligomers are formed in situ just before the biological experiments and their aggregation grade could be standardized.


Journal of Alzheimer's Disease | 2013

Docosahexaenoic Acid Reduces Amyloid-β Induced Toxicity in Cells of the Neurovascular Unit

Szilvia Veszelka; Andrea E. Tóth; Fruzsina R. Walter; Zsolt Datki; Emese Mozes; Lívia Fülöp; Zsolt Bozsó; Éva Hellinger; Monika Vastag; Barbara Orsolits; Zsuzsanna Környei; Botond Penke; Mária A. Deli

Alzheimers disease (AD) is characterized by the accumulation of amyloid-β peptides (Aβ) as perivascular deposits and senile plaques in the brain. The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and reduced risk in AD in several epidemiological trials; however the exact underlying molecular mechanism remains to be elucidated. The aim of the study was to test whether DHA can exert a direct protective effect on the elements of the neurovascular unit, such as neurons, glial cells, brain endothelial cells, and pericytes, treated with Aβ42 (15 μM). A dose-dependent high cellular toxicity was found in viability assays in all cell types and on acute hippocampal slices after treatment with Aβ42 small oligomers prepared in situ from an isopeptide precursor. The cell morphology also changed dramatically in all cell types. In brain endothelial cells, damaged barrier function and increased para- and transcellular permeability were observed after peptide treatment. The production of reactive oxygen species was elevated in pericytes and endothelial and glial cells. DHA (30 μM) significantly decreased the Aβ42-induced toxic effects in all cell types measured by viability assays, and protected the barrier integrity and functions of brain endothelial cells. DHA also decreased the elevated rhodamine 123 accumulation in brain endothelial cells pre-treated with Aβ42 indicating an effect on efflux pump activity. These results indicate for the first time that DHA can protect not only neurons but also the other elements of the neurovascular unit from the toxic effects of Aβ42 and this effect may be beneficial in AD.


PLOS ONE | 2012

A Foldamer-Dendrimer Conjugate Neutralizes Synaptotoxic β-Amyloid Oligomers

Lívia Fülöp; István M. Mándity; Gábor Juhász; Viktor Szegedi; Anasztázia Hetényi; Edit Wéber; Zsolt Bozsó; Dóra Simon; Mária Benkő; Zoltán Király; Tamás A. Martinek

Background and Aims Unnatural self-organizing biomimetic polymers (foldamers) emerged as promising materials for biomolecule recognition and inhibition. Our goal was to construct multivalent foldamer-dendrimer conjugates which wrap the synaptotoxic β-amyloid (Aβ) oligomers with high affinity through their helical foldamer tentacles. Oligomeric Aβ species play pivotal role in Alzheimers disease, therefore recognition and direct inhibition of this undruggable target is a great current challenge. Methods and Results Short helical β-peptide foldamers with designed secondary structures and side chain chemistry patterns were applied as potential recognition segments and their binding to the target was tested with NMR methods (saturation transfer difference and transferred-nuclear Overhauser effect). Helices exhibiting binding in the µM region were coupled to a tetravalent G0-PAMAM dendrimer. In vitro biophysical (isothermal titration calorimetry, dynamic light scattering, transmission electron microscopy and size-exclusion chromatography) and biochemical tests (ELISA and dot blot) indicated the tight binding between the foldamer conjugates and the Aβ oligomers. Moreover, a selective low nM interaction with the low molecular weight fraction of the Aβ oligomers was found. Ex vivo electrophysiological experiments revealed that the new material rescues the long-term potentiation from the toxic Aβ oligomers in mouse hippocampal slices at submicromolar concentration. Conclusions The combination of the foldamer methodology, the fragment-based approach and the multivalent design offers a pathway to unnatural protein mimetics that are capable of specific molecular recognition, and has already resulted in an inhibitor for an extremely difficult target.


Journal of Neurochemistry | 2005

Identification of synaptic plasma membrane proteins co‐precipitated with fibrillar β‐amyloid peptide

Yann Verdier; Emoke Huszár; Botond Penke; Zsuzsa Penke; Gary Woffendin; Michaela Scigelova; Lívia Fülöp; Mária Szücs; Katalin F. Medzihradszky; Tamás Janáky

The β‐amyloid peptide that is overproduced in Alzheimers disease rapidly forms fibrils, which are able to interact with various molecular partners. This study aimed to identify abundant synaptosomal proteins binding to the fibrillar β‐amyloid (fAβ) 1–42. Triton X‐100‐soluble proteins were extracted from the rat synaptic plasma membrane fraction. Interacting proteins were isolated by co‐precipitation with fAβ, or with fibrillar crystallin as a negative control. Protein identification was accomplished (1) by separating the tryptically digested peptides of the protein pellet by one‐dimensional reversed‐phase HPLC and analysing them using an ion‐trap mass spectrometer with electrospray ionization; and (2) by subjecting the precipitated proteins to gel electrophoretic fractionation, in‐gel tryptic digestion and to matrix‐assisted laser desorption/ionization time‐of‐flight mass measurements and post‐source decay analysis. Six different synaptosomal proteins co‐precipitated with fAβ were identified by both methods: vacuolar proton‐pump ATP synthase, glyceraldehyde‐3‐phosphate dehydrogenase, synapsins I and II, β‐tubulin and 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase. Most of these proteins have already been associated with Alzheimers disease, and the biological and pathophysiological significance of their interaction with fAβ is discussed.


International Immunology | 2013

Complement receptor type 1 (CR1, CD35) is a potent inhibitor of B-cell functions in rheumatoid arthritis patients

Mariann Kremlitzka; Anna Polgár; Lívia Fülöp; Emese Kiss; Gyula Poór; Anna Erdei

The involvement of B cells, complement activation and subsequent immune complex deposition has all been implicated in the pathogenesis of rheumatoid arthritis (RA). Although the reduced expression of complement receptor 1 (CR1, CD35) and 2 (CR2, CD21) on the B cells of RA patients has been known for a long time, their exact role in B-cell tolerance and autoimmunity is not yet fully understood. To get a deeper insight into the possible mechanisms, we studied the expression and function of CR1 and CR2 on various subsets of B cells of healthy donors and RA patients at various stages of the disease by FACS analysis, (3)H-thymidine incorporation and ELISA. We found that CD19(+)CD27(-) naive B cells up-regulate the expression of the inhibitory CR1 during differentiation to CD19(+)CD27(+) memory B cells both in healthy donors and in RA patients, whereas the expression of the activatory CR2 is down-regulated. This clearly demonstrates that the expression of these two antagonistic complement receptors is regulated differentially during the development of human B cells, a phenomenon which may influence the maintenance of peripheral B-cell tolerance. Our functional studies show that after clustering CR1 both by its natural ligand and To5 mAb, the inhibitory function of CD35 is maintained in RA patients, despite its significantly reduced expression compared with healthy individuals. Besides blocking B-cell receptor-induced proliferation, CR1 inhibits the differentiation of B cells to plasmablasts and their immunoglobulin production. Since the reduced expression of CR1 in RA patients does not affect its inhibitory function, this receptor might serve as a new target for therapeutical interventions.

Collaboration


Dive into the Lívia Fülöp's collaboration.

Top Co-Authors

Avatar

Botond Penke

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mária A. Deli

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Szilvia Veszelka

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge