Livio Giuliani
Urbana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Livio Giuliani.
Cardiovascular Research | 2009
Roberto Gaetani; Mario Ledda; Lucio Barile; Isotta Chimenti; Flavia De Carlo; Elvira Forte; Vittoria Ionta; Livio Giuliani; Enrico D'Emilia; Giacomo Frati; Fabio Miraldi; D. Pozzi; Elisa Messina; Settimio Grimaldi; Alessandro Giacomello; Antonella Lisi
AIMS Modulation of cardiac stem cell (CSC) differentiation with minimal manipulation is one of the main goals of clinical applicability of cell therapy for heart failure. CSCs, obtained from human myocardial bioptic specimens and grown as cardiospheres (CSps) and cardiosphere-derived cells (CDCs), can engraft and partially regenerate the infarcted myocardium, as previously described. In this paper we assessed the hypothesis that exposure of CSps and CDCs to extremely low-frequency electromagnetic fields (ELF-EMFs), tuned at Ca2+ ion cyclotron energy resonance (Ca2+-ICR), may drive their differentiation towards a cardiac-specific phenotype. METHODS AND RESULTS A significant increase in the expression of cardiac markers was observed after 5 days of exposure to Ca2+-ICR in both human CSps and CDCs, as evidenced at transcriptional, translational, and phenotypical levels. Ca2+ mobilization among intracellular storages was observed and confirmed by compartmentalized analysis of Ca2+ fluorescent probes. CONCLUSIONS These results suggest that ELF-EMFs tuned at Ca2+-ICR could be used to drive cardiac-specific differentiation in adult cardiac progenitor cells without any pharmacological or genetic manipulation of the cells that will be used for therapeutic purposes.
Bioelectromagnetics | 2000
Antonella Lisi; D. Pozzi; E. Pasquali; Sabrina Rieti; M. Girasole; A. Cricenti; R. Generosi; Annalucia Serafino; A. Congiu-Castellano; Giampietro Ravagnan; Livio Giuliani; Settimio Grimaldi
Human Raji B lymphoid cells after exposure for 64 h to a 1 mT (rms) 50 Hz sinusoidal magnetic field showed a reorganization of membrane and cytoskeletal components. Atomic force microscopy in air revealed several modifications in 80% of the exposed cells, such as loss of microvilli-like structures followed by progressive appearance of membrane introflections. This change in plasma membrane morphology was also accompanied by a different actin distribution, as detected by phalloidin fluorescence. These observations support our previous hypothesis that electric and magnetic fields may modify the plasma membrane structure.
Biomagnetic Research and Technology | 2008
Livio Giuliani; Settimio Grimaldi; Antonella Lisi; Enrico D'Emilia; Natalia Bobkova; Mikhail N. Zhadin
In the present work the results of the known investigation of the influence of combined static (40 μT) and alternating (amplitude of 40 nT) parallel magnetic fields on the current through the aqueous solution of glutamic acid, were successfully replicated. Fourteen experiments were carried out by the application of the combined magnetic fields to the solution placed into a Plexiglas reaction vessel at application of static voltage to golden electrodes placed into the solution. Six experiments were carried out by the application of the combined magnetic fields to the solution placed in a Plexiglas reaction vessel, without electrodes, within an electric field, generated by means of a capacitor at the voltage of 27 mV. The frequency of the alternating field was scanned within the bounds of 1.0 Hz including the cyclotron frequency corresponding to a glutamic acid ion and to the applied static magnetic field. In this study the prominent peaks with half-width of ~0.5 Hz and with different heights (till 80 nA) were registered at the alternating magnetic field frequency equal to the cyclotron frequency (4.2 Hz). The general reproducibility of the investigated effects was 70% among the all solutions studied by us and they arose usually after 40–60 min. after preparation of the solution. In some made-up solutions the appearance of instability in the registered current was noted in 30–45 min after the solution preparation. This instability endured for 20–40 min. At the end of such instability period the effects of combined fields action appeared practically every time. The possible mechanisms of revealed effects were discussed on the basis of modern quantum electrodynamics.
Electromagnetic Biology and Medicine | 2006
Antonella Lisi; Alberto Foletti; Mario Ledda; Emanuela Rosola; Livio Giuliani; Enrico D’Emilia; Settimio Grimaldi
Electromagnetic therapy is a treatment method in which an electromagnetic or magnetic stimulus is used to achieve physiological changes in the body. The specific aim of the present work concerns the effectiveness of low frequency electromagnetic fields to modify the biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz 100 μT electromagnetic field for one hour (twice daily), indicated modification in shape and morphology. These modifications were also associated with different actin distribution as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and β-Catenin, both differentiation and adhesion markers, revealed an increase in involucrin and β-Catenin expression, supporting the conclusion that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that 7 Hz electromagnetic field, may modify cell biochemistry interfering in the differentiation and cellular adhesion of normal keratinocytes.
Electromagnetic Biology and Medicine | 2008
Antonella Lisi; Mario Ledda; Flavia De Carlo; D. Pozzi; Elisa Messina; Roberto Gaetani; Isotta Chimenti; Lucio Barile; Alessandro Giacomello; Enrico D'Emilia; Livio Giuliani; Alberto Foletti; Annamaria Patti; Antonella Vulcano; Settimio Grimaldi
The identification of suitable stem cell cultures and differentiating conditions that are free of xenogenic growth supplements is an important step in finding the clinical applicability of cell therapy in two important fields of human medicine: heart failure and bone remodeling, growth and repair. We recently demonstrated the possibility of obtaining cardiac stem cells (CSCs) from human endomyocardial biopsy specimens. CSCs self-assemble into multi-cellular clusters known as cardiospheres (CSps) that engraft and partially regenerate infarcted myocardium. CSps and cardiosphere-derived-cells (CDCs) were exposed for five days in an incubator regulated for temperature, humidity, and CO2 inside a solenoid system. This system was placed in a magnetically shielded room. The cells were exposed simultaneously to a static magnetic field (MF) and a parallel low-alternating frequency MF, close to the cyclotron frequency corresponding to the charge/mass ratio of the Ca++ ion. In this exposure condition, CSps and CDCs modulate their differentiation turning on cardiogenesis and turning off vasculogenesis. Cardiac markers such as troponin I (TnI) and myosin heavy chain (MHC) were up-regulated. Conversely, angiogenic markers such as vascular endothelial growth factor (VEGF) and kinase domain receptor (KDR) were down-regulated as evidenced by immunocytochemistry. Exposure to the 7 Hz calcium ion cyclotron resonance (ICR) frequency can modulate the cardiogenic vs. angiogenic differentiation process of ex vivo expanded CSCs. This may pave the way for novel approaches in tissue engineering and cell therapy. With regard to bone remodeling, it has been suggested that bone marrow-derived mesenchymal stem cells (MSC) may be considered as a potential therapeutic tool. Using the Ca++-dependent specific differentiation potential of the ELF-MF 7 Hz ICR, we show here that exposure of human MSC to these same MF conditions enhanced the expression of osteoblast differentiation markers such as alkaline phosphatase, osteocalcin, and osteopontin, as analyzed by real-time quantitative PCR, without affecting cell proliferation. As expected, while the differentiation marker factors were up regulated, the ICR electromagnetic field down regulated osteoprotegerin gene expression, a critical regulator of postnatal skeletal development and homeostasis in humans as well as mice.
Electromagnetic Biology and Medicine | 2006
Mikhail Zhadin; Livio Giuliani
One of the main problems of bioelectromagnetics—the unbelievable narrow resonance peaks at the cyclotron frequency of the alternating magnetic field—was considered. Modern electrodynamics of condensed matter clearly brings out that the reason of this phenomenon is extremely low viscosity within coherence domains of aqueous electrolytic solutions. The electrochemical model of action of combined static and alternating magnetic fields on aqueous solutions of amino acids is proposed. The possibility of arising a succession of changes in ionic forms in these processes was revealed. The dipole ions (zwitterions) together with water molecules electrostatically forming joint groups in the solution, create favorable conditions for arising mixed coherence domains there. Simultaneously with evolution of the coherent processes in these domains, the amino acid zwitterions are transforming into the usual ionic form, fit for cyclotron resonance. The development of cyclotron resonance under action of combined magnetic fields increases the ion kinetic energy, and the ions leave the domains for the incoherent component of the solution according to Del Giudice pattern (Comisso et al., 8; Del Giudice et al., 10), creating the peak current through the solution. Then the ions are transforming little by little into zwitterionic form again; after that, the solution becomes ready to react on exposure of magnetic fields again. The possibilities for formation of coherence domains composed of water molecules together with peptide molecules or protein ones are discussed.
Electromagnetic Biology and Medicine | 2008
Antonella Lisi; Mario Ledda; Flavia De Carlo; Alberto Foletti; Livio Giuliani; Enrico D'Emilia; Settimio Grimaldi
The specific aim of the present work concerns the effectiveness of low-frequency electromagnetic fields treatment to modify biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz electromagnetic field, tuned to calcium ion cyclotron resonance (ICR), showed modifications in the cytoskeleton. These modifications were related to different actin distributions as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and β catenin, both differentiation and adhesion markers, revealed an increase in involucrin and β-catenin expression, indicating that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that a 7 Hz calcium ICR electromagnetic field may modify cell biochemistry and interfere in the differentiation and cellular adhesion of normal keratinocytes, suggesting the possibility to use ICR electromagnetic therapy for the treatment of undifferentiated diseases.
PLOS ONE | 2013
Mario Ledda; Francesca Megiorni; D. Pozzi; Livio Giuliani; Enrico D’Emilia; Sara Piccirillo; Cristiana Mattei; Settimio Grimaldi; Antonella Lisi
In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca2+-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca2+-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca2+-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.
Electromagnetic Biology and Medicine | 2015
Enrico D'Emilia; Livio Giuliani; Antonella Lisi; Mario Ledda; Settimio Grimaldi; L. Montagnier; Abraham R. Liboff
Abstract There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O+. Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5 Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudices model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states.
Electromagnetic Biology and Medicine | 2015
Alberto Foletti; Mario Ledda; Settimio Grimaldi; Enrico D'Emilia; Livio Giuliani; Abraham R. Liboff; Antonella Lisi
Abstract Several years ago just before Christmas, in a small meeting room at the Institute of Pharmacology at the University of Rome, we had the opportunity to attend a meeting on “The role of QED in medicine” by Emilio Del Giudice and Giuliano Preparata. Before that meeting, we were more oriented towards a mechanistic view of Biochemistry and Medicine, believing that chemical reactions could only take place when a random collision between molecules with a gain in energy takes place. We envisioned water as just a solvent in which was possible to dissolve a solute. After we listened to Giuliano’s and Emilio’s speech on the “New physics of water”, and on “The possible origin of coherence in cell, tissues and the interaction of very weak and low frequency magnetic fields with the ions, systems of the cell”, we realized that living organisms are complex electrochemical systems which evolved in a relatively narrow range of well-defined environmental parameters. Environmental natural electro-magnetic fields are an ubiquitous factor in nature. If nature gave certain organisms the ability to receive information about the environment via invisible electromagnetic signals, then there must also the capability to discriminate between significant and meaningless ones. Bearing in mind that electromagnetic fields can be perceived by living organisms by means a resonance effect, we should not be amazed if they can be able to induce different biological effects. The work that we will present in memory of Emilio is based on the hypotheses that an aqueous system a chemical differentiation agent such as retinoic acid (RA) were electronically captured and transferred to the culture medium of Neuroblastoma Cell Line (LAN-5) and the proliferation rate was assessed to assess cell responses to the electromagnetic information transfer through the aqueous system. Like those enfolded in living organisms could play a synergic role in modulating biological functions, generating dissipative structures under appropriate patterns of electromagnetic signals providing basis for storing and retrieving biological activities. An external electro-magnetic stimulus from a source molecule can be stored, translated, and transferred by the aqueous systems to the biological target, selectively driving their endogenous activity and mimicking the effect of a source molecule.