Liviu Ungur
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liviu Ungur.
Journal of the American Chemical Society | 2011
Yun-Nan Guo; Gong-Feng Xu; Wolfgang Wernsdorfer; Liviu Ungur; Yang Guo; Jinkui Tang; Hongjie Zhang; Liviu F. Chibotaru; Annie K. Powell
The high axiality and Ising exchange interaction efficiently suppress quantum tunneling of magnetization of an asymmetric dinuclear Dy(III) complex, as revealed by combined experimental and theoretical investigations. Two distinct regimes of blockage of magnetization, one originating from the blockage at individual Dy sites and the other due to the exchange interaction between the sites, are separated for the first time. The latter contribution is found to be crucial, allowing an increase of the relaxation time by 3 orders of magnitude.
Angewandte Chemie | 2009
Po-Heng Lin; Tara J. Burchell; Liviu Ungur; Liviu F. Chibotaru; Wolfgang Wernsdorfer; Muralee Murugesu
Single-molecule magnets (SMMs) continue to be an attractive research field because of their unique and intriguing properties and potential applications in high-density data storage technologies and molecular spintronics. The anisotropic barrier (U) of an SMM is derived from a combination of an appreciable spin ground state (S) and uniaxial Ising-like magneto-anisotropy (D). The magnet-like behavior can be observed by slow relaxation of the magnetization below the blocking temperature. Since the discovery of SMMs in the early 1990s, this assumption has formed the basis for the understanding of the origin of the anisotropic barrier. However, in recent years the development of novel lanthanide-only SMMs that challenge and defy this theory pose a number of questions: How can slow relaxation of the magnetization be observed in a nonmagnetic state complex? Why are large energy barriers seen for mononuclear lanthanide(III) complexes? To answer such important questions, it is vital to investigate novel SMMs with high magnetoanisotropy for which the influence of the large negative D value could result in higher anisotropic barriers. Clearly lanthanide-based polynuclear systems are an important avenue to explore in the pursuit of SMMs with higher anisotropic barriers, because of the strong spin–orbit coupling commonly observed in 4f systems. However, lanthanide-only SMMs are rare. The majority of reported SMMs have been prepared with transition-metal ions, although the recent application of a mixed transition-metal/ lanthanide strategy also yielded many structurally and magnetically interesting systems. The scarcity of lanthanide-only SMMs results from the difficulty in promoting magnetic interactions between the lanthanide ions. The interactions can, however, be enhanced by overlapping bridging ligand orbitals. In addition, fast quantum tunneling of the magnetization (QTM), which is common for lanthanide systems, generally prevents the isolation of SMMs with high anisotropic energy barriers. Our recent work suggests that dysprosium(III) ions may hold the key to obtaining high-blocking-temperature lanthanide-only SMMs. When an appropriate ligand system is employed, it is possible to exploit the large intrinsic magnetoanisotropy, high spin, and reduced QTM that dysprosium(III) ions offer. Recently, we have focused our attention towards the synthesis of dysprosium(III) cluster complexes with 1,2bis(2-hydroxy-3-methoxybenzylidene) hydrazone (H2bmh) and 3-methoxysalicylaldehyde hydrazone (Hmsh) as chelating agents (see Figure S1 in the Supporting Information). This strategy has proven to be successful and has led to a polynuclear lanthanide SMM with a record anisotropic barrier. Herein, we report the synthesis, structure, and magnetism of a tetranuclear dysprosium(III) SMM that exhibits the largest relaxation barrier seen for any polynuclear SMM to date. A suspension of DyCl3·6H2O and o-vanillin (2:1 ratio) in DMF/CH2Cl2 (1:5 ratio) was treated with 4 equivalents of Et3N. The solution was stirred for 1 minute, and then 4 equivalents of N2H4·H2O was added. The resulting yellow solution yielded rectangular, orange-yellow crystals of the tetranuclear complex [Dy4(m3-OH)2(bmh)2(msh)4Cl2] (1) in 19.1% yield after 2 days. The msh and bmh ligands were formed in situ by the reaction of o-vanillin and hydrazine. The slight excess of hydrazine is essential for the formation of both ligands; when an excess of o-vanillin was used instead, no product was isolated. The basic conditions promote the deprotonation of the ligands and the formation of bridging hydroxide anions. Single-crystal X-ray analysis revealed the centrosymmetric complex 1 (Figure 1), which has a defect-dicubane central core. The four coplanar Dy ions are bridged by two m3-OH ligands displaced above and below (0.922 ) the Dy4 plane with Dy O bond lengths of 2.362(6), 2.302(6), and 2.447(6) andDy O Dy angles of 106.5(2), 107.7(2), and 105.7(2)8, and also by a combination of four phenoxide oxygen atoms [Dy O 2.312(2), 2.298(6), 2.448(6), 2.345(6) ] and two diaza bridging groups [Dy N 2.508(8), 2.564(8) ]. Close inspection of the packing arrangement reveals stacking of the [*] P.-H. Lin, Dr. T. J. Burchell, Dr. M. Murugesu Chemistry Department, University of Ottawa and Centre for Catalysis Research and Innovation D’Iorio Hall, 10 Marie Curie, Ottawa, ON, K1N6N5 (Canada) Fax: (+1)613-562-5170 E-mail: [email protected] Homepage: http://www.science.uottawa.ca/~mmuruges/
Nature Chemistry | 2013
Robin J. Blagg; Liviu Ungur; Floriana Tuna; James Speak; Priyanka Comar; David Collison; Wolfgang Wernsdorfer; Eric J. L. McInnes; Liviu F. Chibotaru; Richard E. P. Winpenny
Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.
Journal of the American Chemical Society | 2011
Jérôme Long; Fatemah Habib; Po-Heng Lin; Ilia Korobkov; Gary D. Enright; Liviu Ungur; Wolfgang Wernsdorfer; Liviu F. Chibotaru; Muralee Murugesu
A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.
Journal of Computational Chemistry | 2016
Francesco Aquilante; Jochen Autschbach; Rebecca K. Carlson; Liviu F. Chibotaru; Mickaël G. Delcey; Luca De Vico; Ignacio Fdez. Galván; Nicolas Ferré; Luis Manuel Frutos; Laura Gagliardi; Marco Garavelli; Angelo Giussani; Chad E. Hoyer; Giovanni Li Manni; Hans Lischka; Dongxia Ma; Per Åke Malmqvist; Thomas Müller; Artur Nenov; Massimo Olivucci; Thomas Bondo Pedersen; Daoling Peng; Felix Plasser; Ben Pritchard; Markus Reiher; Ivan Rivalta; Igor Schapiro; Javier Segarra-Martí; Michael Stenrup; Donald G. Truhlar
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Journal of the American Chemical Society | 2016
Jiang Liu; Yan-Cong Chen; Jun-Liang Liu; Veacheslav Vieru; Liviu Ungur; Jian-Hua Jia; Liviu F. Chibotaru; Yanhua Lan; Wolfgang Wernsdorfer; Song Gao; Xiao-Ming Chen; Ming-Liang Tong
Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.
Journal of the American Chemical Society | 2016
Yan-Cong Chen; Jun-Liang Liu; Liviu Ungur; Jiang Liu; Quan-Wen Li; Long-Fei Wang; Zhao-Ping Ni; Liviu F. Chibotaru; Xiao-Ming Chen; Ming-Liang Tong
Single-molecule magnets (SMMs) that can be trapped in one of the bistable magnetic states separated by an energy barrier are among the most promising candidates for high-density information storage, quantum processing, and spintronics. To date, a considerable series of achievements have been made. However, the presence of fast quantum tunnelling of magnetization (QTM) in most SMMs, especially in single-ion magnets (SIMs), provides a rapid relaxation route and often sets up a limit for the relaxation time. Here, we pursue the pentagonal bipyramidal symmetry to suppress the QTM and present pentagonal bipyramidal Dy(III) SIMs [Dy(Cy3PO)2(H2O)5]Cl3·(Cy3PO)·H2O·EtOH (1) and [Dy(Cy3PO)2(H2O)5]Br3·2(Cy3PO)·2H2O·2EtOH (2), (Cy3PO = tricyclohexyl phosphine oxide). Magnetic characterizations reveal their fascinating SMM properties with high energy barriers as 472(7) K for 1 and 543(2) K for 2, along with a record magnetic hysteresis temperature up to 20 K for 2. These results, combined with the ab initio calculations, offer an illuminating insight into the vast possibility and potential of what the symmetry rules can achieve in molecular magnetism.
Journal of Chemical Physics | 2012
Liviu F. Chibotaru; Liviu Ungur
A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects.
Angewandte Chemie | 2014
Liviu Ungur; Jennifer J. Le Roy; Ilia Korobkov; Muralee Murugesu; Liviu F. Chibotaru
Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single-molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal-radical SMMs. On the contrary, mononuclear complexes, called single-ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear Er(III) complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications.
Journal of the American Chemical Society | 2008
Liviu F. Chibotaru; Liviu Ungur; Christophe Aronica; Hani Elmoll; Guillaume Pilet; Dominique Luneau
A mixed-valence Co(II)/Co(III) heptanuclear wheel [Co(II)3Co(III)4(L)6(MeO)6] (LH2 = 1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one) has been synthesized and its crystal structure determined using single-crystal X-ray diffraction. The valence state of each cobalt ion was established by bond valence sum calculations. Studies of the temperature dependence of the magnetic susceptibility and the field dependence of the magnetization evidence ferromagnetic interactions within the compound. In order to understand the magnetic properties of this Co7 wheel, we performed ab initio calculations for each cobalt fragment at the CASSCF/CASPT2 level, including spin-orbit coupling effects within the SO-RASSI approach. The four Co(III) ions were found to be diamagnetic and to give a significant temperature-independent paramagnetic contribution to the susceptibility. The spin-orbit coupling on the three Co(II) sites leads to separations of approximately 200 cm(-1) between the ground and excited Kramers doublets, placing the Co7 wheel into a weak-exchange limit in which the lowest electronic states are adequately described by the anisotropic exchange interaction between the lowest Kramers doublets on Co(II) sites. Simulation of the exchange interaction was done within the Lines model, keeping the fully ab initio treatment of magnetic anisotropy effects on individual cobalt fragments using a recently developed methodology. A good description of the susceptibility and magnetization was obtained for nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange parameters (1.5 and 5.5 cm(-1), respectively). The strong ferromagnetic interaction between distant cobalt ions arises as a result of low electron-promotion energies in the exchange bridges containing Co(III) ions. The calculations showed a large value of the magnetization along the main magnetic axis (10.1 mu(B)), which is a combined effect of the ferromagnetic exchange interaction and negative magnetic anisotropy on the two marginal Co(II) sites. The lack of single-molecule magnet behavior in [Co(II)3Co(III)4(L)6(MeO)6] is explained by relatively large matrix elements of transverse magnetic moments between states of maximal magnetization of the ground Kramers doublet, evidenced by ab initio calculations, and the associated large tunneling rates between these states in the presence of dipolar transverse magnetic fields in the crystal.