Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liwei Bao is active.

Publication


Featured researches published by Liwei Bao.


ACS Nano | 2013

Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies

Weiqiang Chen; Shinuo Weng; Feng Zhang; Steven G. Allen; Xiang Li; Liwei Bao; Raymond H. W. Lam; Jill A. Macoska; Sofia D. Merajver; Jianping Fu

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Cancer Research | 2011

p38γ Promotes Breast Cancer Cell Motility and Metastasis through Regulation of RhoC GTPase, Cytoskeletal Architecture, and a Novel Leading Edge Behavior

Devin T. Rosenthal; Harish Iyer; Silvia Escudero; Liwei Bao; Zhifen Wu; Alejandra C. Ventura; Celina G. Kleer; Ellen M. Arruda; Krishnakumar Garikipati; Sofia D. Merajver

Understanding the molecular alterations that confer cancer cells with motile, metastatic properties is needed to improve patient survival. Here, we report that p38γ motogen-activated protein kinase regulates breast cancer cell motility and metastasis, in part, by controlling expression of the metastasis-associated small GTPase RhoC. This p38γ-RhoC regulatory connection was mediated by a novel mechanism of modulating RhoC ubiquitination. This relationship persisted across multiple cell lines and in clinical breast cancer specimens. Using a computational mechanical model based on the finite element method, we showed that p38γ-mediated cytoskeletal changes are sufficient to control cell motility. This model predicted novel dynamics of leading edge actin protrusions, which were experimentally verified and established to be closely related to cell shape and cytoskeletal morphology. Clinical relevance was supported by evidence that elevated expression of p38γ is associated with lower overall survival of patients with breast cancer. Taken together, our results offer a detailed characterization of how p38γ contributes to breast cancer progression. Herein we present a new mechanics-based analysis of cell motility, and report on the discovery of a leading edge behavior in motile cells to accommodate modified cytoskeletal architecture. In summary, these findings not only identify a novel mechanism for regulating RhoC expression but also advance p38γ as a candidate therapeutic target.


PLOS ONE | 2012

RhoC Impacts the Metastatic Potential and Abundance of Breast Cancer Stem Cells

Devin T. Rosenthal; Jie Zhang; Liwei Bao; Lian Zhu; Zhifen Wu; Kathy Toy; Celina G. Kleer; Sofia D. Merajver

Cancer stem cells (CSCs) have been shown to promote tumorigenesis of many tumor types, including breast, although their relevance to cancer metastasis remains unclear. While subpopulations of CSCs required for metastasis have been identified, to date there are no known molecular regulators of breast CSC (BCSC) metastasis. Here we identify RhoC GTPase as an important regulator of BCSC metastasis, and present evidence suggesting that RhoC also modulates the frequency of BCSCs within a population. Using an orthotopic xenograft model of spontaneous metastasis we discover that RhoC is both necessary and sufficient to promote SUM149 and MCF-10A BCSC metastasis–often independent from primary tumor formation–and can even induce metastasis of non-BCSCs within these cell lines. The relationship between RhoC and BCSCs persists in breast cancer patients, as expression of RhoC and the BCSC marker ALDH1 are highly correlated in clinical specimens. These results suggest new avenues to combating the deadliest cells driving the most lethal stage of breast cancer progression.


Cancer Research | 2009

Preclinical development of a bifunctional cancer cell homing, PKCε inhibitory peptide for the treatment of head and neck cancer

Liwei Bao; Michael A. Gorin; Manchao Zhang; Alejandra C. Ventura; William C. Pomerantz; Sofia D. Merajver; Theodoros N. Teknos; Anna K. Mapp; Quintin Pan

Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide, comprising approximately 50% of all malignancies in some developing nations. Our recent work identified protein kinase Cepsilon (PKCepsilon) as a critical and causative player in establishing an aggressive phenotype in HNSCC. In this study, we investigated the specificity and efficacy of HN1-PKCepsilon, a novel bifunctional cancer cell homing, PKCepsilon inhibitory peptide, as a treatment for HNSCC. HN1-PKCepsilon peptide was designed by merging two separate technologies and synthesized as a capped peptide with two functional modules, HN1 (cancer cell homing) and PKCepsilon (specific PKCepsilon inhibitory), connected by a novel linker module. HN1-PKCepsilon preferentially internalized into UMSCC1 and UMSCC36 cells, two HNSCC cell lines, in comparison with oral epithelial cells: 82.1% positive for UMSCC1 and 86.5% positive for UMSCC36 compared with 1.2% positive for oral epithelial cells. In addition, HN1-PKCepsilon penetrated HNSCC cells in a dose- and time-dependent manner. Consistent with these in vitro observations, systemic injection of HN1-PKCepsilon resulted in selective delivery of HN1-PKCepsilon into UMSCC1 xenografts in nude mice. HN1-PKCepsilon blocked the translocation of active PKCepsilon in UMSCC1 cells, confirming HN1-PKCepsilon as a PKCepsilon inhibitor. HN1-PKCepsilon inhibited cell invasion by 72 +/- 2% (P < 0.001, n = 12) and cell motility by 56 +/- 2% (P < 0.001, n = 5) in UMSCC1 cells. Moreover, in vivo bioluminescence imaging showed that HN1-PKCepsilon significantly (83 +/- 1% inhibition; P < 0.02) retards the growth of UMSCC1 xenografts in nude mice. Our work indicates that the bifunctional HN1-PKCepsilon inhibitory peptide represents a promising novel therapeutic strategy for HNSCC.


Clinical Cancer Research | 2009

Antiangiogenic Tetrathiomolybdate Protects against Her2/neu-Induced Breast Carcinoma by Hypoplastic Remodeling of the Mammary Gland

Quintin Pan; Devin T. Rosenthal; Liwei Bao; Celina G. Kleer; Sofia D. Merajver

Purpose: The objective of the present study was to delineate the efficacy of tetrathiomolybdate (TM), a novel antiangiogenic anticancer agent, as a chemopreventative agent. Experimental Design: Nulliparous Her2/neu transgenic mice were treated with water or TM for 180 days and observed for tumor development during treatment and for 180 days after treatment. Mammary gland composition and architecture were also observed following TM treatment of Her2/neu transgenic and normal FVB mice. Results: At the 1-year follow-up, 86.7% of control and 40% of TM-treated Her2/neu mice had palpable mammary tumors with a median time to tumor development of 234 days (95% confidence interval, 202-279 days) for control and >460 days for TM-treated mice (P < 0.0005, n = 15). The mammary glands from TM-treated Her2/neu and FVB mice showed a blunted epithelial ductal branching system due to a significant decrease in the number of secondary branches and total number of differentiated mammary epithelial cells. Microvessel density in Her2/neu and FVB mammary glands was lowered by 65.6 ± 6.2% and 50.9 ± 4.5% (P < 0.005), respectively, following TM therapy, consistent with the antiangiogenic effect of TM. Lastly, TM treatment resulted in a 2-fold increase in the absolute number of aldehyde dehydrogenase–positive mammary stem cells in Her2/neu and FVB mammary glands. Conclusion: Taken together, these results strongly support that TM is a potent chemopreventative agent as a consequence of hypoplastic remodeling of the mammary gland through modulation of the mammary stem cell compartment. (Clin Cancer Res 2009;15(23):7441–6)


Journal of Biological Chemistry | 2016

RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells

Michelle L. Wynn; Joel A. Yates; Charles R. Evans; Lauren D. Van Wassenhove; Zhi Fen Wu; Sydney Bridges; Liwei Bao; Chelsea L. Fournier; Sepideh Ashrafzadeh; Matthew J. Merrins; Leslie S. Satin; Santiago Schnell; Charles F. Burant; Sofia D. Merajver

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including 13C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.


Scientific Reports | 2016

Macrophages Enhance Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling

Steven G. Allen; Yu Chih Chen; Julie Madden; Chelsea L. Fournier; Megan Altemus; Ayse B. Hiziroglu; Yu Heng Cheng; Zhi Fen Wu; Liwei Bao; Joel A. Yates; Euisik Yoon; Sofia D. Merajver

Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. All IBC patients have lymph node involvement and one-third of patients already have distant metastasis at diagnosis. This propensity for metastasis is a hallmark of IBC distinguishing it from less lethal non-inflammatory breast cancers (nIBC). Genetic profiling studies have been conducted to differentiate IBC from nIBC, but no IBC cancer-cell-specific gene signature has been identified. We hypothesized that a tumor-extrinsic factor, notably tumor-associated macrophages, promotes and contributes to IBC’s extreme metastatic phenotype. To this end, we studied the effect of macrophage-conditioned media (MCM) on IBC. We show that two IBC cell lines are hyper-responsive to MCM as compared to normal-like breast and aggressive nIBC cell lines. We further interrogated IBC’s hyper-responsiveness to MCM using a microfluidic migration device, which permits individual cell migration path tracing. We found the MCM “primes” the IBC cells’ cellular machinery to become extremely migratory in response to a chemoattractant. We determined that interleukins −6, −8, and −10 within the MCM are sufficient to stimulate this enhanced IBC migration effect, and that the known metastatic oncogene, RhoC GTPase, is necessary for the enhanced migration response.


BMC Cancer | 2016

Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics

Weiqiang Chen; Steven G. Allen; Ajaya Kumar Reka; Weiyi Qian; Shuo Han; Jianing Zhao; Liwei Bao; Venkateshwar G. Keshamouni; Sofia D. Merajver; Jianping Fu

BackgroundCirculating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population.MethodsWe developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples. Our CTC capture chip utilized the differential adhesion preference of cancer cells to nanoroughened etched glass surfaces as compared to normal blood cells and thus did not depend on the physical size or surface protein expression of CTCs.ResultsThe microfluidic CTC capture chip was able to achieve a superior capture yield for both epithelial cell adhesion molecule positive (EpCAM+) and EpCAM- cancer cells in blood samples. Additionally, the microfluidic CTC chip captured CTCs undergoing transforming growth factor beta-induced epithelial-to-mesenchymal transition (TGF-β-induced EMT) with dynamically down-regulated EpCAM expression. In a mouse model of human breast cancer using EpCAM positive and negative cell lines, the number of CTCs captured correlated positively with the size of the primary tumor and was independent of their EpCAM expression. Furthermore, in a syngeneic mouse model of lung cancer using cell lines with differential metastasis capability, CTCs were captured from all mice with detectable primary tumors independent of the cell lines’ metastatic ability.ConclusionsThe microfluidic CTC capture chip using a novel nanoroughened glass substrate is broadly applicable to capturing heterogeneous CTC populations of clinical interest independent of their surface marker expression and metastatic propensity. We were able to capture CTCs from a non-metastatic lung cancer model, demonstrating the potential of the chip to collect the entirety of CTC populations including subgroups of distinct biological and phenotypical properties. Further exploration of the biological potential of metastatic and presumably non-metastatic CTCs captured using the microfluidic chip will yield insights into their relevant differences and their effects on tumor progression and cancer outcomes.


Journal of Cell Science | 2018

Loss of PTEN promotes formation of signaling-capable clathrin-coated pits

Luciana K. Rosselli-Murai; Joel A. Yates; Sei Yoshida; Julia T. Bourg; Kenneth K. Y. Ho; Megan White; Julia Prisby; Xinyu Tan; Megan Altemus; Liwei Bao; Zhifen Wu; Sarah L. Veatch; Joel A. Swanson; Sofia D. Merajver; Allen P. Liu

ABSTRACT Defective endocytosis and vesicular trafficking of signaling receptors has recently emerged as a multifaceted hallmark of malignant cells. Clathrin-coated pits (CCPs) display highly heterogeneous dynamics on the plasma membrane where they can take from 20 s to over 1 min to form cytosolic coated vesicles. Despite the large number of cargo molecules that traffic through CCPs, it is not well understood whether signaling receptors activated in cancer, such as epidermal growth factor receptor (EGFR), are regulated through a specific subset of CCPs. The signaling lipid phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], which is dephosphorylated by phosphatase and tensin homolog (PTEN), is a potent tumorigenic signaling lipid. By using total internal reflection fluorescence microscopy and automated tracking and detection of CCPs, we found that EGF-bound EGFR and PTEN are enriched in a distinct subset of short-lived CCPs that correspond with clathrin-dependent EGF-induced signaling. We demonstrated that PTEN plays a role in the regulation of CCP dynamics. Furthermore, increased PI(3,4,5)P3 resulted in higher proportion of short-lived CCPs, an effect that recapitulates PTEN deletion. Altogether, our findings provide evidence for the existence of short-lived ‘signaling-capable’ CCPs. Highlighted Article: EGFR and PTEN localize to short-lived clathrin-coated pits (CCPs), and PTEN regulates CCP dynamics and signaling, suggesting compartmentalized signaling is crucial for proper signaling transduction.


bioRxiv | 2017

Loss Of PTEN Promotes Formation Of Signaling-Specific Clathrin-Coated Pits

Luciana K. Rosselli-Murai; Joel A. Yates; Sei Yoshida; Julia T. Bourg; Kenneth K. Y. Ho; Megan White; Julia Prisby; Xinyu Tan; Megan Altemus; Liwei Bao; Zhifen Wu; Sarah L. Veatch; Joel A. Swanson; Sofia D. Merajver; Allen P. Liu

Defective endocytosis and vesicular trafficking of signaling receptors has recently emerged as a multifaceted hallmark of malignant cells. Clathrin-coated pits (CCPs), the fundamental unit of clathrin-mediated endocytosis, display highly heterogeneous dynamics on the plasma membrane where they can take from 20 seconds to over a minute to form cytosolic coated-vesicles. Despite the large number of cargo molecules that traffic through CCPs, it is not well understood whether signaling receptors activated in cancer, such as epidermal growth factor receptor (EGFR), are regulated through a specific subset of CCPs. The signaling lipid phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3), which is dephosphorylated by phosphatase tensin homolog (PTEN), is a potent tumorigenic signaling lipid that is present in excess in many types of cancers. Using total internal reflection fluorescence microscopy and automated tracking and detection of CCPs, we find PTEN and EGF bound EGFR are enriched in a distinct subset of short-lived CCPs that corresponded with clathrin-dependent EGF-induced signaling. By deleting PTEN using CRISPR-Cas9 and reconstituting PTEN, we demonstrate that PTEN plays a role in the regulation of CCP dynamics; this appears to recapitulate CCP dynamics in highly metastatic PTEN-deleted cancer cells where we find a larger proportion of short-lived CCPs and higher initiation density compared to the normal cells. Furthermore, increased PI(3,4,5)P3 results in higher proportion of short-lived CCPs, an effect that recapitulates PTEN deletion. Our findings provide strong evidence for the existence of short-lived ‘signaling-capable’ CCPs. Altogether, these findings demonstrate the importance of PTEN and PI(3,4,5)P3 in regulating CCP dynamics and assign a new function to PTEN as a modulator of signaling-capable CCPs.

Collaboration


Dive into the Liwei Bao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhifen Wu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quintin Pan

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge