Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liwei Gu is active.

Publication


Featured researches published by Liwei Gu.


Journal of Agricultural and Food Chemistry | 2008

Whole Berries versus Berry Anthocyanins: Interactions with Dietary Fat Levels in the C57BL/6J Mouse Model of Obesity

Ronald L. Prior; Xianli Wu; Liwei Gu; Tiffany J. Hager; Aaron G. Hager; Luke R. Howard

Male C57BL/6J mice received diets with either 10% of calories from fat (LF) or a high-fat diet [45% (HF45) or 60% (HF60) calories from fat] for 92 days (expt 1) or 70 days (expt 2). These were given with or without freeze-dried powders from whole blueberries (BB) or strawberries (SB) (expt 1) or purified anthocyanin extracts from BB or SB (expt 2). Body composition was determined utilizing Echo MRI. Berries added to the LF diet did not alter weight gain, final body weights, body fat, or protein (percent body weight) or diet (grams) or energy (kilocalories) intake. However, in both HF45- and HF60-fed mice, weight gain, final weights, body fat (percent), and epididymal fat weights increased and body protein decreased ( p < 0.01) compared to LF mice. In mice fed HF45 diet plus BB, body weight gains, body fat (percent of BW), and epididymal fat weights were significantly greater than those in the HF45-fed controls, whereas weights of mice fed SB HF were similar to those of HF controls. SB or BB feeding did not alter glucose tolerance, although glucose tolerance decreased with age and in HF45 versus LF mice. Baseline plasma glucose was lower in SB- versus HF45-fed mice. After 8 weeks, mice fed the HF60 diet plus purified anthocyanins from BB in the drinking water had lower body weight gains and body fat than the HF60-fed controls. Anthocyanins fed as the whole blueberry did not prevent and may have actually increased obesity. However, feeding purified anthocyanins from blueberries or strawberries reduced obesity.


Journal of Agricultural and Food Chemistry | 2010

Antioxidant Capacity, Phenolic Content, and Profiling of Phenolic Compounds in the Seeds, Skin, and Pulp of Vitis rotundifolia (Muscadine Grapes) As Determined by HPLC-DAD-ESI-MSn

Amandeep K. Sandhu; Liwei Gu

The objective of this study was to determine and compare the total phenolic content and antioxidant capacity in the seeds, skin, and pulp of eight cultivars of Florida-grown muscadine grapes and to identify the phenolic compounds in these respective portions. Total phenolic contents were determined colorimetrically using Folin-Ciocalteu reagent, and antioxidant capacity was determined by oxygen radical absorbance capacity (ORAC). High-performance liquid chromatography equipped with diode array (HPLC-DAD) and electrospray ionization mass spectrometric detection (ESI-MS(n)) was used to identify the phenolic compounds in the seeds, skin, and pulp of muscadine grapes. The total phenolic content and antioxidant capacity, based on fresh weight, were highest in seeds followed by skin and pulp. On average, 87.1, 11.3, and 1.6% of phenolic compounds were present in seeds, skin, and pulp, respectively. A total of 88 phenolic compounds of diverse structures were tentatively identified in muscadines, which included 17 in the pulp, 28 in the skin, and 43 in the seeds. Seventeen compounds were identified for the first time in muscadine grapes. The compounds identified in seeds included hydrolyzable tannins, flavan-3-ols and condensed tannins, ellagic acid derivatives, and quercetin rhamnoside. The skin contained hydrolyzable tannins, flavonoids, including anthocyanin 3,5-diglucosides, quercetin, myricetin, and kaempferol glycosides.


Molecular Nutrition & Food Research | 2009

Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet.

Ronald L. Prior; Xianli Wu; Liwei Gu; Tiffany J. Hager; Aaron G. Hager; Sam Wilkes; Luke R. Howard

Male C57BL/6 mice received diets with either 10% of kcal from fat, or a high fat diet [45% (HF45) or 60% (HF60) kcal from fat]. Diets were prepared with or without freeze-dried powders (10%) from whole blueberries (BB), strawberries (SB), Concord grape or black raspberry. In the 2nd study, purified anthocyanins (ACNs) from SB or BB were added to the drinking water of the treatments fed the HF60 diet. In Study 1, serum triglycerides were increased by feeding the HF45 diet but were elevated further when black raspberry or BB was included in the HF45 diet. Liver total lipids and triglycerides were increased in mice fed HF45 diet and inclusion of any of the berry powders in the HF45 diet did not alter concentrations compared to HF45 controls. In the 2nd study, mice fed the HF60 diet plus purified ACNs from BB in the water had lower body weight gains and body fat than the HF60 fed. Serum cholesterol and triglyceride levels were elevated with the HF60 diet and decreased to control levels when ACNs from either SB or BB were included in the drinking water. Serum leptin levels were consistently decreased to control low fat levels in those ACN treatments in which measures of body fat were decreased. Administering purified ACNs from BB and strawberry via drinking water prevented the development of dyslipidemia and obesity in mice, but feeding diets containing whole berries or purple corn (PC) ACNs did not alter the development of obesity.


Journal of Chromatography A | 2009

Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples

Rebecca J. Robbins; Jadwiga Leonczak; J. Christopher Johnson; Julia Li; Catherine L. Kwik-Uribe; Ronald L. Prior; Liwei Gu

The quantitative parameters and method performance for a normal-phase HPLC separation of flavanols and procyanidins in chocolate and cocoa-containing food products were optimized and assessed. Single laboratory method performance was examined over three months using three separate secondary standards. RSD(r) ranged from 1.9%, 4.5% to 9.0% for cocoa powder, liquor and chocolate samples containing 74.39, 15.47 and 1.87 mg/g flavanols and procyanidins, respectively. Accuracy was determined by comparison to the NIST Standard Reference Material 2384. Inter-lab assessment indicated that variability was quite low for seven different cocoa-containing samples, with a RSD(R) of less than 10% for the range of samples analyzed.


Journal of Agricultural and Food Chemistry | 2012

Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls.

Haiyan Liu; Liwei Gu

Accumulation of advanced glycation end products (AGEs) in vivo is associated with aging, diabetes, Alzheimers disease, renal failure, etc. The objective of this study was to investigate the inhibitory effects of brown algae Fucus vesiculosus phlorotannins on the formation of AGEs. F. vesiculosus phlorotannins were extracted using 70% acetone. The resultant extract was fractionated into dichloromethane, ethyl acetate, butanol, and water fractions. The ethyl acetate fraction was further fractionated into four subfractions (Ethyl-F1 to -F4) using a Sephadex LH-20 column. F. vesiculosus acetone extract or fractions significantly inhibited the formation of AGEs mediated by glucose and methylglyoxal in a concentration-dependent manner. The concentrations of F. vesiculosus extracts required to inhibit 50% of albumin glycation (EC(50)) in the bovine serum albumin (BSA)-methylglyoxal assay were lower than those of aminoguanidine (a drug candidate for diabetic complication), except for F. vesiculosus acetone extract and dichloromethane fraction. In the BSA-glucose assay, F. vesiculosus extracts inhibited BSA glycation more than or as effectively as aminoguanidine, except for Ethyl-F3 and -F4. The ethyl acetate fraction and its four subfractions scavenged more than 50% of methylglyoxal in two hours. The hypothesis whether F. vesiculosus phlorotannins scavenged reactive carbonyls by forming adducts was tested. Phloroglucinol, the constituent unit of phlorotannins, reacted with glyoxal and methylglyoxal. Five phloroglucinol-carbonyl adducts were detected and tentatively identified using HPLC-ESI-MS(n).


Molecular Nutrition & Food Research | 2011

Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects

Zheng Li; Susan S. Percival; Suzanna Bonard; Liwei Gu

SCOPE Nanoparticles possess unique chemical and biological properties compared to bulk materials. Bioactive food components encapsulated in nanoparticles may have increased bioavailability and bioactivities. METHODS AND RESULTS Self-assembled nanoparticles made of partially purified pomegranate ellagitannins (PPE) and gelatin were fabricated using three PPE-to-gelatin mass ratios (1:5, 5:5, and 7:5). The PPE contained 16.6% (w/w) of punicalagin A, 32.5% (w/w) of punicalagin B, and a small amount of ellagic acid-hexoside and ellagic acid (1%, w/w). Nanoparticles fabricated using the ratio 5:5 had a particle size of 149.3±1.8 nm, positive zeta-potential of 17.8±0.9 mV, production efficiency 53.0±4.2%, and spherical morphology under scanning electron microscopy. Loading efficiency of punicalagin A and punicalagin B in these particles were 94.2±0.4% and 83.8±0.5 %, respectively. Loading capacity was 14.8±1.5% and 25.7±2.2%, respectively. Only punicalagin anomers were able to bind with gelatin to form nanoparticles, whereas ellagic acid-hexoside or ellagic acid could not. Fourier transform infrared spectroscopy suggested that the interactions between ellagitannins and gelatin were hydrogen bonding and hydrophobic interactions. PPE-gelatin nanoparticle suspension was less effective than PPE in inducing the early stage of apoptosis on human promyelocytic leukemia cells HL-60. But they had similar effects in inducing late stage of apoptosis and necrosis. CONCLUSION Pomegranate ellagitannins bind with gelatin to form self-assembled nanoparticles. Ellagitannins encapsulated in nanoparticles had decreased apoptotic effects on leukemia cells HL-60.


Journal of Agricultural and Food Chemistry | 2012

Transport of Cranberry A-Type Procyanidin Dimers, Trimers, and Tetramers across Monolayers of Human Intestinal Epithelial Caco-2 Cells

Keqin Ou; Susan S. Percival; Tao Zou; Christina Khoo; Liwei Gu

A-type procyanidin oligomers in cranberries are known to inhibit the adhesion of uropathogenic bacteria. B-type procyanidin dimers and trimers are absorbed by humans. The absorption of A-type procyanidins from cranberries in humans has not been demonstrated. This study examined the transport of A-type cranberry procyanidin dimers, trimers, and tetramers on differentiated human intestinal epithelial Caco-2 cell monolayers. Procyanidins were extracted from cranberries and purified using chromatographic methods. Fraction I contained predominantly A-type procyanidin dimer A2 [epicatechin-(2-O-7, 4-8)-epicatechin]. Fraction II contained primarily A-type trimers and tetramers, with B-type trimers, A-type pentamers, and A-type hexamers being minor components. Fraction I or II in solution was added onto the apical side of the Caco-2 cell membranes. The media at the basolateral side of the membranes were analyzed using HPLC-MS(n) after 2 h. Data indicated that procyanidin dimer A2 in fraction I and A-type trimers and tetramers in fraction II traversed across Caco-2 cell monolayers with transport ratio of 0.6%, 0.4%, and 0.2%, respectively. This study demonstrated that A-type dimers, trimers, and tetramers were transported across Caco-2 cells at low rates, suggesting that they could be absorbed by humans after cranberry consumption.


Journal of Agricultural and Food Chemistry | 2014

Fabrication of Self-Assembled (−)-Epigallocatechin Gallate (EGCG) Ovalbumin–Dextran Conjugate Nanoparticles and Their Transport across Monolayers of Human Intestinal Epithelial Caco-2 Cells

Zheng Li; Liwei Gu

Nanoparticles have the potential to increase bioavailability of nutraceutical compounds such as (-)-epigallocatechin gallate (EGCG). Ovalbumin was conjugated with dextran using the Maillard reaction. The resultant ovalbumin-dextran (O-D) conjugates were self-assembled with EGCG to form EGCG O-D conjugate nanoparticles at pH 5.2 after heating at 80 °C for 60 min. Ovalbumin in EGCG O-D conjugate nanoparticles was further cross-linked by glutaraldehyde for 24 h at room temperature. EGCG O-D conjugate nanoparticles and cross-linked EGCG O-D conjugate nanoparticles in aqueous suspension had particle sizes of 285 and 339 nm, respectively, and showed a spherical morphology. The loading efficiencies of EGCG in these two nanoparticles were 23.4 and 30.0%, whereas the loading capacities were 19.6 and 20.9%, respectively. These nanoparticles showed positive zeta-potentials in a pH range from 2.5 to 4.0 but had negative charges at pH ≥5.0. EGCG O-D conjugate nanoparticles maintained a particle size of 183-349 nm in simulated gastric fluid (SGF) and 188-291 nm in simulated intestinal fluid (SIF) at 37 °C for 2 h, whereas cross-linked nanoparticles had particle sizes of 294-527 nm in SGF and 206-300 nm in SIF. Limited release of EGCG was observed in both nanoparticle systems in simulated gastric and intestinal fluids without and with digestive enzymes. EGCG O-D conjugate nanoparticles significantly enhanced the apparent permeability coefficient (Papp) of EGCG on Caco-2 monolayers compared with EGCG solution, suggesting that these nanoparticles may improve the absorption of EGCG.


Journal of Agricultural and Food Chemistry | 2013

Adsorption/Desorption Characteristics and Separation of Anthocyanins from Muscadine (Vitis rotundifolia) Juice Pomace by Use of Macroporous Adsorbent Resins

Amandeep K. Sandhu; Liwei Gu

In this study, the adsorption/desorption characteristics of anthocyanins on five Amberlite resins (FPX-66, XAD-7HP, XAD-16N, XAD-1180, and XAD-761) were evaluated. FPX-66 and XAD-16N showed the highest adsorption and desorption capacities and ratios for anthocyanins from muscadine pomace extract, while XAD-7HP had the lowest adsorption and desorption capacities and ratios. On the basis of static adsorption and desorption tests, three resins (FPX-66, XAD-16N, and XAD-1180) were selected for adsorption kinetics and isotherms. The adsorption mechanism was better explained by the pseudo-first-order kinetics for FPX-66 and XAD-16N; however, for XAD-1180, pseudo-second-order kinetics was the most suitable model. The experimental data fitted best to Langmuir isotherm model for all three resins. Dynamic testing was done on a column packed with FPX-66 resin and breakthrough volume was reached at 17 bed volumes of muscadine pomace water extract during adsorption. Three bed volumes of aqueous ethanol (70%) resulted in complete desorption. Resin adsorption resulted in a concentrated pomace extract that contained 13% (w/w) anthocyanins with no detectable sugars.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins–gelatin–chitosan nanoparticles

Tao Zou; Susan S. Percival; Qiong Cheng; Zheng Li; Cheryl A. Rowe; Liwei Gu

Cocoa procyanidins (CPs)-gelatin-chitosan nanoparticles were fabricated based on the procyanidin-protein and electrostatic interactions, with an objective to enhance the stability and bioactivity of CPs. The CPs were purified using chromatographic methods and analyzed using HPLC equipped with a fluorescence detector (FLD) and mass spectrometer (MS). The purified CPs had a purity of 53.1% (w/w) and contained procyanidin oligomers (from monomer to decamers) and polymers, with polymers being the predominant component (26.4%, w/w). Different CPs-gelatin-chitosan mass ratios were tested to investigate the effects of formulation on the nanoparticle fabrication. Using CPs-gelatin-chitosan mass ratio of 0.75:1:0.5, the resultant nanoparticles had a particle size of 344.7 nm, zeta-potential of +29.8 mV, particle yield of 51.4%, loading efficiency of 50.1%, and loading capacity of 20.5%. The CPs-gelatin-chitosan nanoparticles were spherical as observed by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) suggested that the primary interaction between the CPs and gelatin was hydrogen bond and hydrophobic interaction, while electrostatic interaction was the main binding force between chitosan and CPs-gelatin nanoparticles. Nanoencapsulation of the CPs significantly improved the stability of the CPs at 60°C. The CPs-gelatin-chitosan nanoparticles showed the same apoptotic effects at lower concentrations in human acute monocytic leukemia THP-1 cells compared with the CPs in solution.

Collaboration


Dive into the Liwei Gu's collaboration.

Top Co-Authors

Avatar

Ronald L. Prior

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Amandeep K. Sandhu

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Li

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Tao Zou

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Soonkyu Chung

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Xianli Wu

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Gao

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge