Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liwei Zou is active.

Publication


Featured researches published by Liwei Zou.


Journal of Climate | 2010

Understanding the Predictability of East Asian Summer Monsoon from the Reproduction of Land–Sea Thermal Contrast Change in AMIP-Type Simulation

Tianjun Zhou; Liwei Zou

PreviousstudiesonthepredictabilityofEastAsiansummermonsooncirculationbasedon SST-constrained Atmospheric Model Intercomparison Project (AMIP)-type simulations show that this phenomenon is reproduced with lower skill than other monsoon patterns. The authors examine the reason in terms of the predictability of land‐sea thermal contrast change. In the observation, a stronger monsoon circulation is dominated by a tropospheric warming over East Asian continent and a cooling over the tropical western Pacific and North Pacific, indicating an enhancement of the summertime ‘‘warmer land‐colder ocean’’ mean state. The tropospheric cooling over the tropical western Pacific and North Pacific, and the tropospheric warming over East Asian continent are reproducible in AMIP-type simulations, although there are biases over both the North Pacific and East Asia. The tropospheric temperature responses in the model indicate a reasonable predictability of the meridional land‐sea thermal contrast; the zonal land‐sea thermal contrast change isalso predictablebut showsbiasoverthe regionnorthto 258N in NorthPacific.The reproducibilityof the meridional thermal contrast is higher than that of the zonal thermal contrast. An examination of the predictability of two commonly used monsoon indices reveals far different skills. The index defined as zonal wind shear between 850 and 200 hPa averaged over East Asia is highly predictable. The skill comes from the predictability of the meridional land‐sea thermal contrast. Although the zonal thermal contrast change is mostly predictable except for the biases over the North Pacific, the monsoon index defined as zonal sea level pressure(SLP)differenceacrosstheEastAsiancontinentandtheNorthPacificisunpredictable.Thelowskill is related to the index definition, which attaches more importance to the land SLP change. The limitation of the index in measuring the land SLP change reduces the model skill. Although regional features of monsoon precipitation changes remain a challenge for current climate models, the predictable land‐sea thermal contrast change sheds light on monsoon circulation prediction.


Journal of Climate | 2013

Can a Regional Ocean–Atmosphere Coupled Model Improve the Simulation of the Interannual Variability of the Western North Pacific Summer Monsoon?

Liwei Zou; Tianjun Zhou

AbstractA flexible regional ocean–atmosphere–land system coupled model [Flexible Regional Ocean Atmosphere Land System (FROALS)] was developed through the Ocean Atmosphere Sea Ice Soil, version 3 (OASIS3), coupler to improve the simulation of the interannual variability of the western North Pacific summer monsoon (WNPSM). The regionally coupled model consists of a regional atmospheric model, the Regional Climate Model, version 3 (RegCM3), and a global climate ocean model, the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) Climate Ocean Model (LICOM). The impacts of local air–sea interaction on the simulation of the interannual variability of the WNPSM are investigated through regionally ocean–atmosphere coupled and uncoupled simulations, with a focus on El Nino’s decaying summer. Compared with the uncoupled simulation, the regionally coupled simulation exhibits improvements in both the climatology and the ...


Advances in Atmospheric Sciences | 2013

Near Future (2016–40) Summer Precipitation Changes over China as Projected by a Regional Climate Model (RCM) under the RCP8.5 Emissions Scenario: Comparison between RCM Downscaling and the Driving GCM

Liwei Zou; Tianjun Zhou

Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980–2005) and another for near-future climate (2015–40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipitation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation.RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.


Journal of Climate | 2010

East China Summer Rainfall Variability of 1958–2000: Dynamical Downscaling with a Variable-Resolution AGCM

Liwei Zou; Tianjun Zhou; Laurent Li; Jie Zhang

Abstract A variable-grid atmospheric general circulation model, namely, Laboratoire de Meteorologie Dynamique-zoom, version 4 (LMDz4), with a local zoom over eastern China, is driven by 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data and is used as a downscaling tool of summer rainfall variability for the period 1958–2000. During the integration, the model temperature and wind were nudged to the ERA-40 data through a relaxation procedure. The performance of the LMDz4 in simulating the regional rainfall features is thoroughly assessed through a comparison to both rain gauge data and the reanalysis product. The dynamical downscaling improves not only the climatology of the monsoon major rainband but also the interannual variability modes of rainfall over eastern China in comparison with that of the ERA-40 data. The added values of LMDz4 are evident in both the spatial patterns of dominant rainfall variability modes and the associated temporal variations. A comparis...


Journal of Geophysical Research | 2016

Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean‐atmosphere coupled model to stand‐alone RCM simulations

Liwei Zou; Tianjun Zhou; Dongdong Peng

The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.


Journal of Climate | 2014

Parameter Tuning and Calibration of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain

Liwei Zou; Yun Qian; Tianjun Zhou; Ben Yang

In this study, the authors calibrated the performance of the Regional Climate Model, version 3 (RegCM3), with the Massachusetts Institute of Technology (MIT)‐Emanuel cumulus parameterization scheme over the Coordinated Regional Climate Downscaling Experiment (CORDEX) East Asia domain by tuning seven selected parameters based on the multiple very fast simulated annealing (MVFSA) approach. The seven parameters were selected based on previous studies using RegCM3 with the MIT‐Emanuel convection scheme. The results show the simulated spatial pattern of rainfall, and the probability density function distribution of daily rainfall rates is significantly improved in the optimal simulation. Sensitivityanalysis suggests that the parameter relative humidity criteria (RHC) has the largest effect on the model results. Followed by an increase of RHC, an increase of total rainfall is found over the northern equatorial western Pacific, mainly contributed by the increase of explicit rainfall. The increases of the convergence of low-level water vapor transport and the associated increases in cloud water favor the increase of explicit rainfall. The identified optimal parameters constrained by total rainfall have positive effects on the low-level circulation and surface airtemperature.Furthermore,theoptimizedparametersbasedonthechosenextremecasearetransferableto a normal case and the model’s new version with a mixed convection scheme.


Science China-earth Sciences | 2013

Two interannual variability modes of the Northwestern Pacific Subtropical Anticyclone in boreal summer

Chao He; Tianjun Zhou; Liwei Zou; Lixia Zhang

Using the reanalysis data and 20th century simulation of coupled model FGOALS_gl developed by LASG/IAP, we identified two distinct interannual modes of Northwestern Pacific Subtropical Anticyclone (NWPAC) by performing Empirical Orthogonal Function (EOF) analysis on 850 hPa wind field over the northwestern Pacific in summer. Based on the associated anomalous equatorial zonal wind, these two modes are termed as “Equatorial Easterly related Mode” (EEM) and “Equatorial Westerly related Mode” (EWM), respectively. The formation mechanisms of these two modes are similar, whereas the maintenance mechanisms, dominant periods, and the relationships with ENSO are different. The EEM is associated with El Niño decaying phase, with the anomalous anticyclone established in the preceding winter and persisted into summer through local positive air-sea feedback. By enhancing equatorial upwelling of subsurface cold water, EEM favors the transition of ENSO from El Niño to La Niña. The EWM is accompanied by the El Niño events with long persistence, with the anomalous anticyclone formed in spring and strengthened in summer due to the warm Sea Surface Temperature anomalies (SSTA) forcing from the equatorial central-eastern Pacific. The model well reproduces the spatial patterns of these two modes, but fails to simulate the percentage variance accounted for by the two modes. In the NCEP reanalysis (model result), EEM (EWM) appears as the first mode, which accounts for 35.6% (68.2%) of the total variance.


Journal of Geophysical Research | 2016

Future summer precipitation changes over CORDEX‐East Asia domain downscaled by a regional ocean‐atmosphere coupled model: A comparison to the stand‐alone RCM

Liwei Zou; Tianjun Zhou

Climate changes under the RCP8.5 scenario over the Coordinated Regional Downscaling Experiment (CORDEX)-East Asia domain downscaled by a regional ocean-atmosphere coupled model Flexible Regional Ocean-Atmosphere Land System (FROALS) are compared to those downscaled by the corresponding atmosphere-only regional climate model driven by a global climate system model. Changes in the mean and interannual variability of summer rainfall were discussed for the period of 2051–2070 with respect to the present-day period of 1986–2005. Followed by an enhanced western North Pacific subtropical high and an intensified East Asian summer monsoon, an increase in total rainfall over north China, the Korean Peninsula, and Japan but a decrease in total rainfall over southern China are observed in the FROALS projection. Homogeneous increases of extreme rainfall amounts were found over the CORDEX-East Asia domain. A predominant increase in the interannual variability was evident for both total rainfall and the extreme rainfall amount. The spatial patterns of the projected rainfall changes by FROALS were generally consistent with those from the driving global model at a broad scale due to similar projected circulation changes. In both models, the enhanced southerlies over east China increased the moisture divergences over southern China and enhanced the moisture advection over north China. However, the atmosphere-only regional climate model (RCM) exhibited responses to the underlying sea surface temperature (SST) warming anomalies that were too strong, which induced an anomalous cyclone over the north South China Sea, followed by increases (decreases) of total and extreme rainfall over southern China (central China). The differences of the projected changes in both rainfall and circulation between FROALS and the atmosphere-only RCM were partly affected by the differences in the projected SST changes. The results recommend the employment of a regional ocean-atmosphere coupled model in the dynamical downscaling of climate change over the CORDEX-East Asian domain.


Advances in Atmospheric Sciences | 2015

Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models

Liwei Zou; Tianjun Zhou

The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropogenic emissions continue to rise throughout the 21st century (i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May. A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore, and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific, enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal (near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations.


Journal of meteorological research | 2014

Development of Earth/Climate System Models in China: A Review from the Coupled Model Intercomparison Project Perspective

Tianjun Zhou; Liwei Zou; Bo Wu; Chenxi Jin; Fengfei Song; Xiaolong Chen; Lixia Zhang

The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercomparison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system models, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main components and supporting elements identified by the US National Strategy for Advancing Climate Modeling.

Collaboration


Dive into the Liwei Zou's collaboration.

Top Co-Authors

Avatar

Tianjun Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolong Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lixia Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Donghuan Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenxia Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bin Wang

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chao He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Sun

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge