Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liwen Chang is active.

Publication


Featured researches published by Liwen Chang.


Pediatric Pulmonology | 2010

Thioredoxin protects fetal type II epithelial cells from hyperoxia-induced injury.

Yan Chen; Liwen Chang; Wenbin Li; Zhihui Rong; Wei Liu; Ruiyan Shan; Rui Pan

Oxygen toxicity is known to be one of the major contributors to bronchopulmonary dysplasia, a chronic lung disease in premature infants. Thioredoxin (Trx) is an antioxidant that prevents oxidative stress‐induced cell death, suggesting a potential therapeutic role in bronchopulmonary dysplasia. The aim of this study was to determine the role of Trx in the pathogenesis of hyperoxia‐induced alveolar epithelial cell injury.


Pediatric Research | 2012

Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain

Rui Pan; Zhihui Rong; Yun She; Yuan Cao; Liwen Chang; Wei Hua Lee

BackgroundNeonatal hypoxia–ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to HI, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic–ischemic encephalopathy, but its effects have not been evaluated in appropriate animal models for hypoxic–ischemic encephalopathy.MethodsThis investigation used primary cortical neuron cultures derived from neonatal rats subjected to oxygen and glucose deprivation (OGD) and a well-established neonatal rat HI model.ResultsHI caused brain tissue loss and impaired sensorimotor function and spatial memory whereas SP significantly reduced brain damage and improved neurological performance. These neuroprotective effects of SP are likely the result of improved cerebral metabolism as demonstrated by maintaining adenosine triphosphate (ATP) levels and preventing an increase in intracellular reactive oxygen species (ROS) levels. SP treatment also decreased levels of Bax, a death signal for immature neurons, blocked caspase-3 activation, and activated a key survival signaling kinase, Akt, both in vitro and in vivo.ConclusionSP protected neonatal brain from hypoxic–ischemic injury through maintaining cerebral metabolism and mitochondrial function.


Gene | 2014

GSTM1 and GSTT1 gene polymorphisms as major risk factors for bronchopulmonary dysplasia in a Chinese Han population

Xijuan Wang; Wenbin Li; Wei Liu; Baohuan Cai; Tingting Cheng; Chunfang Gao; Luxia Mo; Hui Yang; Liwen Chang

Bronchopulmonary dysphasia (BPD) is a complex multifactorial disease with an obvious genetic predisposition. Oxidative stress plays an important role in its pathogenesis. Glutathione S-transferases (GSTs) detoxify metabolites produced by oxidative stress within the cell and protect the cells against injury. In the present study, the hypothesis that polymorphisms in the GSTM1 and GSTT1 genes are associated with BPD in Chinese Han infants was examined. Sixty infants with BPD and 100 gestational age and birth weight-matched preterm infants without BPD were recruited. Genotyping for GSTM1 and GSTT1 was performed by multiplex polymerase chain reaction (PCR). The GSTM1 null genotype was more prevalent in BPD infants (65.0%) than in the control subjects (48.0%), which yielded higher risk towards BPD (odds ratio (OR): 2.012, 95% confidence interval (CI)=1.040-3.892, p=0.037). There was no statistically significant association of GSTT1 genotype with BPD (OR: 1.691, 95% CI=0.884-3.236, p=0.111), although the frequency of GSTT1 null genotype was higher among the BPD subjects (60.0%) than in the control patients (47.0%). GSTM1 and GSTT1 double null genotype was also higher in BPD group (38.3%) than in controls (21.0%) with a higher risk towards BPD (OR: 2.338, 95%CI=1.151-4.751, p=0.017). The results suggest that null genotypes of GSTM1 and GSTT1 genes may contribute to the development of BPD in our Chinese Han population.


Cellular Physiology and Biochemistry | 2014

Synergetic effect of α-lipoic acid with keratinocyte growth factor on protecting alveolar epithelial type II cells of rat fetus from hyperoxia -induced injury.

Jing Wang; Wei Liu; Yang Peng; Wenbin Li; Tingting Cheng; Chunfang Gao; Luxia Mo; Zhen Zhao; Liwen Chang

Aim: To explore the potential mechanism of the synergetic effect of α-lipoic acid with keratinocyte growth factor (KGF) on protecting alveolar epithelial type II cells (ATIICs) from hyperoxia-induced injury. Methods: Primary culture of ATIICs from the Sprague-Dawley rat fetuses was examined under room air and 95% of O2. Various KGF concentrations (0 to 100 ng/mL) and 0.5 mM of α-lipoic were added into the cell culture. Levels of intracellular reactive oxygen species, necrosis, and proliferation of ATIICs were measured using flow cytometry, ELISA, and MTT assays, respectively. RT-PCR was performed to detect KGFR mRNA expression. Western blot was employed to detect the expression of KGFR, phospho-p53, HDAC1, and acetylated H3 and H4. Results: KGF promoted the proliferation and inhibited the apoptosis of ATIICs in room air or under temporary exposure to hyperoxia. However, the resistance of ATIICs to KGF was observed after prolonged exposure. Further investigation demonstrated that down-regulation of KGF receptor via activation of p53 and recruitment of HDAC1 induced by oxidative stress contributed to KGF resistance. This resistance could be attenuated by α-lipoic acid, a powerful antioxidant. Conclusion: Application of KGF combined with α-lipoic acid could inhibit KGF resistance to provide maximum protection to ATIICs from hyperoxic injury.


Journal of Huazhong University of Science and Technology-medical Sciences | 2011

Retinoic aacid diminished the expression of MMP-2 in hyperoxia-exposed premature rat lung fibroblasts through regulating mitogen-activated protein kinases

Wenbin Li; Liwen Chang; Zhihui Rong; Wei Liu

This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P<0.01 or 0.05), but did not change after treatment with PD98059 (P>0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P>0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P>0.05), but decreased remarkably after hyperoxia (P<0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P<0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P<0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.SummaryThis study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P<0.01 or 0.05), but did not change after treatment with PD98059 (P>0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P>0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P>0.05), but decreased remarkably after hyperoxia (P<0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P<0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P<0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.


Journal of Huazhong University of Science and Technology-medical Sciences | 2011

Effects of hyperoxia on cytoplasmic thioredoxin system in alveolar type epithelial cells of premature rats

Ruiyan Shan; Liwen Chang; Wenbin Li; Wei Liu; Zhihui Rong; Yan Chen; Lingkong Zeng

SummaryThis study investigated the effects of hyperoxia on dynamic changes of thioredoxin-1 (Trx1) and thioredoxin reductase-1 (TrxR1) in alveolar type II epithelial cells (AECII) of premature rats. Pregnant Sprague-Dawley rats were sacrificed on day 19 of gestation. AECII were isolated and purified from the lungs of premature rats. When cultured to 80% confluence, in vitro cells were randomly divided into air group and hyperoxia group. Cells in the hyperoxia group were continuously exposed to 95% O2/5% CO2 and those in the air group to 95% air/5% CO2. After 12, 24 and 48 h, cells in the two groups were harvested to detect their reactive oxygen species (ROS), apoptosis, TrxR1 activity and the expressions of Trx1 and TrxR1 by corresponding protocols, respectively. The results showed that AEC II exposed to hyperoxia generated excessive ROS and the apoptosis percentage in the hyperoxia group was increased significantly at each time points as compared with that in the air group (P<0.001). Moreover, TrxR1 activity was found to be markedly depressed in the hyperoxia group in comparison to that in the air group (P<0.001). RT-PCR showed the expressions of both Trx1 and TrxR1 mRNA were significantly increased in AECII exposed to hyperoxia for 12 and 24 h (P<0.01), respectively. At 48 h, the level of Trx1 mRNA as well as that of TrxR1 mRNA in the hyperoxia group was reduced and showed no significant difference from that in the air group (P>0.05). Western blotting showed the changes of Trx1 protein expressions in the hyperoxia group paralleled those of Trx1 mRNA expressions revealed by RT-PCR. It was concluded that hyperoxia can up-regulate the protective Trx1/TrxR1 expressed by AECII in a certain period, however, also cause dysfunction of the cytoplasmic thioredoxin system by decreasing TrxR1 activity, which may contribute to the progression of oxidative stress and cell apoptosis and finally result in lung injury.This study investigated the effects of hyperoxia on dynamic changes of thioredoxin-1 (Trx1) and thioredoxin reductase-1 (TrxR1) in alveolar type II epithelial cells (AECII) of premature rats. Pregnant Sprague-Dawley rats were sacrificed on day 19 of gestation. AECII were isolated and purified from the lungs of premature rats. When cultured to 80% confluence, in vitro cells were randomly divided into air group and hyperoxia group. Cells in the hyperoxia group were continuously exposed to 95% O2/5% CO2 and those in the air group to 95% air/5% CO2. After 12, 24 and 48 h, cells in the two groups were harvested to detect their reactive oxygen species (ROS), apoptosis, TrxR1 activity and the expressions of Trx1 and TrxR1 by corresponding protocols, respectively. The results showed that AEC II exposed to hyperoxia generated excessive ROS and the apoptosis percentage in the hyperoxia group was increased significantly at each time points as compared with that in the air group (P<0.001). Moreover, TrxR1 activity was found to be markedly depressed in the hyperoxia group in comparison to that in the air group (P<0.001). RT-PCR showed the expressions of both Trx1 and TrxR1 mRNA were significantly increased in AECII exposed to hyperoxia for 12 and 24 h (P<0.01), respectively. At 48 h, the level of Trx1 mRNA as well as that of TrxR1 mRNA in the hyperoxia group was reduced and showed no significant difference from that in the air group (P>0.05). Western blotting showed the changes of Trx1 protein expressions in the hyperoxia group paralleled those of Trx1 mRNA expressions revealed by RT-PCR. It was concluded that hyperoxia can up-regulate the protective Trx1/TrxR1 expressed by AECII in a certain period, however, also cause dysfunction of the cytoplasmic thioredoxin system by decreasing TrxR1 activity, which may contribute to the progression of oxidative stress and cell apoptosis and finally result in lung injury.


Neuroreport | 2013

Neonatal SVZ EGFP-labeled cells produce neurons in the olfactory bulb and astrocytes in the cerebral cortex by in-vivo electroporation.

Xijuan Wang; Liwen Chang; Zhibao Guo; Wenbin Li; Wei Liu; Baohuan Cai; Jing Wang

Neural progenitors/stem cells (NSCs) exist in neonatal mouse subventricular zone (SVZ). To explore the differentiation of the NSCs in neonatal mouse SVZ and the distribution of the progeny cells derived from these NSCs in early adulthood, the enhanced green fluorescent protein (EGFP) plasmid was transferred into the NSCs in the lateral ventricle of newborn mice (P0) by in-vivo electroporation to trace these cells and their progeny cells. Thirty days after electroporation, histological sections of mouse brain were prepared for immunofluorescence with cell-specific antibodies to identify the type(s) of cells that were marked by EGFP. The results showed that EGFP-positive cells were distributed mainly in the olfactory bulb (OB), cortex, and SVZ, and double labeled with NeuN (neuron marker) in OB, glial fibrillary acidic protein (GFAP) (astrocyte marker) in the cortex, and Blbp and GFAP (astrocyte marker) in SVZ. However, there was no-EGFP-positive cell in the hippocampus. The present results indicate that the NSCs in SVZ of the neonatal mouse can give rise to neurons in the OB and astrocytes in the cortex in early adulthood, but not generate progeny cells residing in the hippocampus. In addition, there are still neural progenitors in SVZ until early adulthood.


Journal of Huazhong University of Science and Technology-medical Sciences | 2008

Effects of hyperoxia on mitochondrial multienzyme complex III and V in premature newborn rat lung.

Cheng Cai; Liwen Chang; Wenbin Li; Wei Liu

SummaryTo investigate the effects of hyperoxia on mitochondrial multienzyme complex III (cytochrome, Cytb) and V (ATPase6, 8) in premature newborn rat lung, the 1-day-old preterm SD rats were randomly assigned to hyperoxia group and air group. The rats in hyperoxia group were continuously exposed to 85% oxygen and those in air group to room air. After 1, 4, 7, 10, 14 day(s) of exposure, these rats were killed, total lung RNA was extracted and Cytb, ATPase6, 8 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR). Western blotting was used to detect the expression of Cytb protein in lung tissue. The results showed that compared with air group, Cytb mRNA expression was significantly increased (P>0.05) after 1, 4 day(s) of exposure. The general tendency decreased after 7 days, and its expression became weak but difference in mRNA expression between the two groups was not significant (P>0.05). ATPase6 mRNA expression was significantly increased 1 day after the exposure (P<0.05) and did not show any significant change 4, 7, 10 days after the exposure (P>0.05). At the 14th day, ATPase6 mRNA expression was significantly increased (P<0.05). ATPase8 mRNA expression did not show any significant change 1, 4, 10 day(s) after the exposure (P>0.05). At the 7th and 14th day, ATPase8 mRNA expression was significantly increased (P<0.05). Western blotting showed that Cytb protein expression was increased 1,4 day(s) after the exposure, but the difference between the two groups was not significant (P>0.05). The general tendency was decreased after 7 days, and its expression became weak but difference was not significant 7, 10 days after the exposure (P>0.05). At day 14 its expression became significantly weak (P<0.05). We are led to conclude that exposure to high concentrations of oxygen can significantly change the expression of Cytb and ATPase6, 8, which results in uncoupling of oxidative phosphorylation in mitochondrial respiration chain, and plays an important role in the mechanism of hyperoxia-induced lung injury.To investigate the effects of hyperoxia on mitochondrial multienzyme complex III (cytochrome, Cytb) and V (ATPase6, 8) in premature newborn rat lung, the 1-day-old preterm SD rats were randomly assigned to hyperoxia group and air group. The rats in hyperoxia group were continuously exposed to 85% oxygen and those in air group to room air. After 1, 4, 7, 10, 14 day(s) of exposure, these rats were killed, total lung RNA was extracted and Cytb, ATPase6, 8 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR). Western blotting was used to detect the expression of Cytb protein in lung tissue. The results showed that compared with air group, Cytb mRNA expression was significantly increased (P>0.05) after 1, 4 day(s) of exposure. The general tendency decreased after 7 days, and its expression became weak but difference in mRNA expression between the two groups was not significant (P>0.05). ATPase6 mRNA expression was significantly increased 1 day after the exposure (P<0.05) and did not show any significant change 4, 7, 10 days after the exposure (P>0.05). At the 14th day, ATPase6 mRNA expression was significantly increased (P<0.05). ATPase8 mRNA expression did not show any significant change 1, 4, 10 day(s) after the exposure (P>0.05). At the 7th and 14th day, ATPase8 mRNA expression was significantly increased (P<0.05). Western blotting showed that Cytb protein expression was increased 1,4 day(s) after the exposure, but the difference between the two groups was not significant (P>0.05). The general tendency was decreased after 7 days, and its expression became weak but difference was not significant 7, 10 days after the exposure (P>0.05). At day 14 its expression became significantly weak (P<0.05). We are led to conclude that exposure to high concentrations of oxygen can significantly change the expression of Cytb and ATPase6, 8, which results in uncoupling of oxidative phosphorylation in mitochondrial respiration chain, and plays an important role in the mechanism of hyperoxia-induced lung injury.


International Journal of Molecular Medicine | 2015

Combination treatment with ethyl pyruvate and IGF-I exerts neuroprotective effects against brain injury in a rat model of neonatal hypoxic-ischemic encephalopathy

Zhihui Rong; Rui Pan; Liwen Chang; Weihua Lee

Neonatal hypoxic-ischemic (HI) brain injury causes severe brain damage in newborns. Following HI injury, rapidly accumulating oxidants injure neurons and interrupt ongoing developmental processes. The antioxidant, sodium pyruvate, has been shown to reduce neuronal injury in neonatal rats under conditions of oxygen glucose deprivation (OGD) and HI injury. In this study, we evaluated the effects of ethyl pyruvate (EP) and insulin-like growth factor-I (IGF-I) alone or in combination in a similar setting. For this purpose, we used an in vitro model involving primary neonatal rat cortical neurons subjected to OGD for 2.5 h and an in vivo model involving unilateral carotid ligation in rats on post-natal day 7 with exposure to 8% hypoxia for 2.5 h. The cultured neurons were examined by lactate dehydrogenase (LDH) and cell viability assays. For the in vivo experiments, behavioral development was evaluated by the foot fault test at 4 weeks of recovery. 2,3,5-Triphenyltetrazolium chloride monohydrate and cresyl violet staining were used to evaluate HI injury. The injured neurons were Fluoro-Jade B-labeled, new neuroprecursors were double labeled with bromodeoxyuridine (BrdU) and doublecortin, new mature neurons were BrdU-labeled and neuronal nuclei were labeled by immunofluorescence. Under conditions of OGD, the LDH levels increased and neuronal viability decreased. Treatment with 0.5 mM EP or 25 ng/ml IGF-I protected the neurons (P<0.05), exerting additive effects. Similarly, either the early administration of EP or delayed treatment with IGF-I protected the neonatal rat brains against HI injury and improved neurological performance and these effects were also additive. This effect may be the result of reduced neuronal injury, and enhanced neurogenesis and maturation. On the whole, our findings demonstrate that the combination of the early administration of EP with delayed treatment with IGF-I exerts neuroprotective effects against HI injury in neonatal rat brains.


Journal of Huazhong University of Science and Technology-medical Sciences | 2013

Association of surfactant protein B gene polymorphisms (C/A-18, C/T1580, intron 4 and A/G9306) and haplotypes with bronchopulmonary dysplasia in chinese han population.

Baohuan Cai; Liwen Chang; Wenbin Li; Wei Liu; Xijuan Wang; Luxia Mo; Ling-xia Zhao; Hong-tao Xu; Hui Yang

SummaryThis study aimed to investigate the association between surfactant protein B (SP-B) polymorphisms and bronchopulmonary dysplasia (BPD) in Chinese Han infants. We performed a casecontrol study including 86 infants with BPD and 156 matched controls. Genotyping was performed by sequence specific primer-polymerase chain reaction (PCR) and haplotypes were reconstructed by the fastPHASE software. The results showed that significant differences were detected in the genotype distribution of C/A-18 and intron 4 polymorphisms of SP-B gene between cases and controls. No significant differences were detected in the genotype distribution of C/T1580 or A/G9306 between the two groups. Haplotype analysis revealed that the frequency of A-del-C-A haplotype was higher in case group (0.12 to 0.05, P=0.003), whereas the frequency of C-inv-C-A haplotype was higher in control group (0.19 to 0.05, P=0.000). In addition, a significant difference was observed in the frequency of C-inv-T-A haplotype between the two groups. It was concluded that the polymorphisms of SP-B intron 4 and C/A-18 could be associated with BPD in Chinese Han infants, and the del allele of intron 4 and A allele of C/A-18 might be used as markers of susceptibility in the disease. Haplotype analysis indicated that the gene-gene interactions would play an important part in determining susceptibility to BPD.

Collaboration


Dive into the Liwen Chang's collaboration.

Top Co-Authors

Avatar

Wei Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wenbin Li

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhihui Rong

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Baohuan Cai

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Luxia Mo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rui Pan

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xijuan Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chunfang Gao

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hui Yang

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge