Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lixin Liu is active.

Publication


Featured researches published by Lixin Liu.


Biomacromolecules | 2010

Amphiphilic Toothbrushlike Copolymers Based on Poly(ethylene glycol) and Poly(ε-caprolactone) as Drug Carriers with Enhanced Properties

Wenlong Zhang; Yanli Li; Lixin Liu; Qiquan Sun; Xintao Shuai; Wen Zhu; Yongming Chen

Amphiphilic poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-poly(epsilon-caprolactone)) (PEG-b-P(HEMA-g-PCL)) toothbrushlike copolymers were synthesized and evaluated as drug delivery carriers. Two toothbrushlike polymers were synthesized via ring-opening polymerization of epsilon-caprolactone (CL) initiated by poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate) (PEG-b-PHEMA) macromolecular initiators, and their molecular structures and physical properties were characterized using (1)H NMR, gel permeation chromatography (GPC), and differential scanning calorimetric analysis (DSC). The melting points and crystallizable temperature have been decreased obviously, implying that the PCL cores of PEG-b-P(HEMA-g-PCL) toothbrushlike copolymer micelles with shorter PCL segments were unlikely to crystallize at room temperature for drug delivery application. Also the micellization properties of toothbrushlike copolymers in aqueous solution were investigated by fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Compared with the micelles from linear PEG-b-PCL block copolymers, the micelles of PEG-b-P(HEMA-g-PCL)s exhibited higher loading capacity to the anticancer drug, doxorubicin (DOX), and the drug-loaded micelles were highly stable in aqueous solution. In vitro DOX release data and confocal laser scanning microscopy (CLSM) studies showed that DOX-loaded toothbrushlike copolymer micelles could be effectively internalized by bladder carcinoma EJ cells, and the DOX could be released into endocytic compartments and finally transported to the nucleus. Such toothbrushlike copolymer micelles can be analogues of linear PEG-b-PCL diblock copolymers, but demonstrated better properties of loading and release due to their hydrophobic PCL cores do not crystallize at delivery conditions.


Biomacromolecules | 2010

Supramolecular Hydrogels from Cisplatin-Loaded Block Copolymer Nanoparticles and α-Cyclodextrins with a Stepwise Delivery Property

Wen Zhu; Yanli Li; Lixin Liu; Yongming Chen; Chun Wang; Fu Xi

A stepwise anticancer drug delivery system based on an injectable supramolecular hydrogel was presented. In this system, poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) block copolymer nanoparticles containing cisplatin were released by erosion of the hydrogels and then the cisplatin was released from the nanoparticles by exchanging with chloride ions. By mixing α-cyclodextrins (α-CDs) and the PEG-b-PAA micelles with their PAA cores loaded with the cisplatin in water, the novel supramolecular hydrogels were generated by threading α-CDs onto the PEG segments and forming physical cross-links of molecular necklaces. The gelation properties could be tuned by changing concentrations of the polymers and cisplatin, their feeds, and by adding PEG homopolymers or Pluronic copolymers as additives. Structures and properties of the supramolecular hydrogels containing cisplatin were studied by wide-angle X-ray diffraction (XRD) and rheology measurements, respectively. The thixotropic effect of the hydrogels and their reversible sol-gel transition were confirmed. In vitro hydrogel erosion experiments were conducted and cisplatin release in saline and pure water was quantified. Hydrogel erosion produced discrete nanoparticles from which cisplatin was released completely in saline. In contrast, the hydrogels were eroded into nanoparticles in pure water, but no cisplatin could be released. In vitro cytotoxicity studies showed that the cisplatin-loaded hydrogels inhibited the growth of human bladder carcinoma EJ cells with a similar potency as that of the free cisplatin, whereas the hydrogels without cisplatin showed no cytotoxicity. These results suggested that the cisplatin-coordinated PEG-b-PAA/α-CD supramolecular hydrogels hold great potential as an injectable system for sustained delivery of cisplatin in cancer therapy.


Macromolecular Rapid Communications | 2012

Molecular Nanoworm with PCL Core and PEO Shell as a Non‐spherical Carrier for Drug Delivery

Peng Zhao; Lixin Liu; Xiaoqin Feng; Chun Wang; Xintao Shuai; Yongming Chen

Core/shell wormlike polymer brushes with densely grafted poly(ϵ-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) are synthesized via grafting an alkynyl terminated PCL-b-PEO (ay-PCL(17) -b-PEO(113) ) onto a well-defined azido functionalized polymethacrylate (PGA(940) ) and are evaluated preliminarily as a single molecular cylindrical vehicle for drug delivery. Water soluble molecular worms of ca. 230 nm are obtained and then the anticancer drug doxorubicin (DOX) is loaded into its PCL core by hydrophobic interaction. Compared with spherical micelles from linear PCL(17) -b-PEO(113) , the brushes demonstrate a lower loading efficiency but a faster release rate of DOX. Confocal laser scanning microscopy measurements show that DOX-loaded cylindrical molecular brushes can easily enter into HeLa and HepG2 cells in 1 h.


International Journal of Pharmaceutics | 2012

Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles

Wen Zhu; Yanli Li; Lixin Liu; Yongming Chen; Fu Xi

A general and simple method was presented for preparing supramolecular hydrogels to deliver anticancer drugs. In this system, hydrophobic anticancer drug doxorubicin (Dox) was loaded into poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) amphiphilic block copolymer micelles by hydrophobic interaction. The drug loaded micelles were then mixed with α-cyclodextrin (α-CD) solution to generate the hydrogel. The α-CDs were threaded onto the PEG coronae of the micelles, and formed physical crosslinks of the molecular necklaces. Moreover, by mixing solutions of cisplatin complexed poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) micelles, Dox loaded PEG-b-PCL micelles and α-CDs together, a dual-drug loaded supramolecular hydrogel was generated. The gelation properties could be tuned by changing concentrations and polymerization degree of the polymers, and by adding PEG homopolymers or Pluronic copolymers as additives. Structures and properties of the drug loaded hydrogels were studied by wide-angle X-ray diffraction (XRD) and rheology measurement, respectively. In vitro drug release in PBS with different pH values was quantified. The erosion of hydrogels produced discrete micelles, from which the free drugs were released. In vitro cytotoxicity studies showed that the Dox loaded hydrogel inhibited the growth of human bladder carcinoma EJ cells, and the dual-drug loaded hydrogel showed even higher cytotoxicity.


Journal of Biomedical Materials Research Part A | 2011

Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery.

Wen Zhu; Yanli Li; Lixin Liu; Wenlong Zhang; Yongming Chen; Fu Xi

Novel micelles from biamphiphilic triblock copolymer poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(acrylic acid) (PEG-b-PCL-b-PAA) as new multifunctional nanocarriers to delivery anticancer drugs were evaluated. The well-defined triblock copolymers prepared by controlled polymerizations self-assembled into micelles in aqueous solution with a hydrodynamic radius of 13 nm as obtained by dynamic light scattering (DLS) and a low critical micellization concentration of 2.9 × 10(-4) g/L. The hydrophobic PCL cores of micelles were applied to load hydrophobic drug doxorubicin and the functional PAA subcoronas clung to the micellar core were used to carry cisplatin through covalent interaction. The results indicated that two anticancer drugs had been loaded by different mechanism either separately or simultaneously. Drug loading content and efficiency as well as release profiles were evaluated. Furthermore, internalization and cytotoxicity of the anticancer nanoparticles against human bladder carcinoma EJ cells were studied. The biamphiphilic triblock copolymer micelles provided not only biocompatibility and biodegradability, but also abilities for loading single and dual anticancer drugs, indicating that this was a useful multifunctional platform for anticancer drug delivery.


RSC Advances | 2015

Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability

Gaili Yang; Rui Zhang; Huahua Huang; Lixin Liu; Lei Wang; Yongming Chen

Novel biobased polyimides (PIs) with good optical transparency and comprehensive properties were synthesized from isomannide-derived diamine and dianhydride monomers. Three kinds of diamines including 2,5-diamino-2,5-dideoxy-1,4:3,6-dianhydroiditol (M1), 1,4:3,6-dianhydro-2,5-di-O-(4-aminophenyl)-D-mannitol (M2), and 1,4:3,6-dianhydro-2,5-di-O-(2-trifluoromethyl-4-aminophenyl)-D-mannitol (M3), as well as 1,4:3,6-dianhydro-2,5-di-O-(3,4-dicarboxyphenyl)-D-mannitol dianhydride (M4), were prepared based on isomannide. These diamines M1–M3 were reacted with M4 and a commercial dianhydride, 4,4′-oxydiphthalic anhydride (ODPA), via a two-step polymerization method, respectively, to yield a series of biobased PI films, PI-1 to PI-6. The resultant PIs had a high content of biomass up to 48 wt%, and they can be readily soluble in various non-proton polar solvents at room temperature. Most of the biobased PIs showed good optical transparency (transmittances at 450 nm over than 80%), along with a cut-off wavelength of 343–364 nm. Furthermore, due to the existence of rigid alicyclic isomannide among the polymeric backbone, biobased PIs maintained fairly high thermal stability with a glass transition temperature of 227–264 °C, and temperature at 5% weight loss over 400 °C in nitrogen. Meanwhile, these PIs exhibited outstanding mechanical properties with tensile strengths greater than 90 MPa and elongation at break higher than 6.0%. It was also found that the biobased PI series with alicyclic M1 possessed higher thermal stability than PIs with semi-aromatic diamines M2 and M3. Thereof, the introduction of biomass building blocks into PIs can offer a great opportunity to develop new sustainable materials with high performance for microelectronic and optoelectronic applications.


Macromolecular Bioscience | 2014

Bamboo leaf-like micro-nano sheets self-assembled by block copolymers as wafers for cells.

Wen Zhu; Bo Peng; Jing Wang; Ke Zhang; Lixin Liu; Yongming Chen

Bamboo leaf shaped poly(ethylene oxide)-b-poly(ϵ-caprolactone) (PEO-b-PCL) sheets were prepared via crystallization-driven self-assembly. By selecting an appropriate mixed solvent, the polymer sheets, with a PCL single-crystal layer sandwiched by two PEO layers, were obtained efficiently. The morphology and structure of the sheets were characterized by microscopes and diffraction techniques. As a non-spherical model particle, endocytosis of the sheets was investigated on RAW 264.7, U937, HUVECs, HeLa, and 293 T cells. The polymer sheets, just like wafers for cells, displayed a selective internalization to different cells, which showed a potential application in accurate cell targeting drug delivery and imaging.


ACS Applied Materials & Interfaces | 2015

Synthesis and cellular internalization of spindle hematite/polymer hybrid nanoparticles.

Jing Wang; Wen Zhu; Lixin Liu; Yongming Chen; Chun Wang

Nonspherical spindle-shaped hematite/polymer hybrid nanoparticles (SPNPs) were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). The long axis of the SPNPs was 370 ± 65 nm, and the short axis was 80 ± 15 nm with an aspect ratio of 4.6-4.7. The SPNPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) was used to estimate the content of grafted polymer. Light-scattering measurement was used to detect the particle size distribution of SPNPs in water and in cell culture medium. HeLa cells internalized the SPNPs within 1 h, and the uptake reached equilibrium in 8 h. These observations contribute to better understanding of the interactions between nonspherical nanoparticles and cells, which may have implication for designing drug delivery vehicles.


Polymer Chemistry | 2018

Mild halogenation of polyolefins using an N-haloamide reagent

Christopher M. Plummer; Houbo Zhou; Wen Zhu; Huahua Huang; Lixin Liu; Yongming Chen

Chlorinated polyolefins remain highly valued commodity polymers owing to their excellent physicochemical properties. The chief synthetic route to this variety of polymer involves the chlorination of polyolefin materials using chlorine gas, an extremely toxic and heavily monitored chemical. We hereby report the application of an N-chloroamide compound in the chlorination of both polyethylene (PE) and polypropylene (PP). An N-bromoamide reagent was also synthesized and used in the bromination of PE samples in an analogous fashion. Polyolefin halogenation reactions, including chlorination and bromination, were performed in solution with various feed ratios and the products were characterized by multi-instrumental analysis including proton nuclear magnetic resonance, size exclusion chromatography, differential scanning calorimetry, Fourier transform-infrared spectroscopy and thermogravimetric analysis. A peak halogen content of 32.7 and 31.9 wt% was determined for chlorine and bromine, respectively. Moreover, a high-density PE film was additionally chlorinated and the result was verified by X-ray photoelectron spectroscopy analysis. The new synthetic methodology has been confirmed to be a tunable and convenient alternative to the use of chlorine gas for the production of chlorinated polyethylene.


Advanced Healthcare Materials | 2018

Uniform Core-Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin

Houkuan Tian; Zhiyu He; Chengxin Sun; Chengbiao Yang; Pengfei Zhao; Lixin Liu; Kam W. Leong; Hai-Quan Mao; Zhijia Liu; Yongming Chen

Oral delivery of protein drugs is an attractive route of administration due to its convenience for repeated dosing and good patient compliance. However, currently oral protein therapeutics show very low bioavailability mainly due to the existence of hostile gastrointestinal (GI) environments, including mucus layers and intestinal epithelial barriers. Herein, using insulin as a model protein therapeutic, the core-shell nanoparticles with thiolated hyaluronic acid (HA-SH) coating (NPHA-SH ) are produced utilizing a two-step flash nanocomplexation process to enhance oral delivery efficiency of insulin. A positively charged nanoparticle core is first generated by electrostatic complexation between insulin and N-(2-hydroxypropyl)-3-trimethyl ammonium chloride modified chitosan (HTCC), followed by surface coating with HA-SH. The optimized NPHA-SH shows an average size of 100 nm with high encapsulation efficiency (91.1%) and loading capacity (38%). In vitro and ex vivo results confirm that NPHA-SH shows high mucus-penetration ability, improved intestinal retention and transepithelial transport property due to its thiolated surface and the ability of HA-SH coating to dissociate from the nanoparticle surface when across the mucosal layer. Oral administration of NPHA-SH to Type 1 diabetic rats yields high efficacy and an average relative bioavailability of 11.3%. These results demonstrate that the HA-SH coated core-shell nanoparticles are a promising oral delivery vehicle for protein therapeutics.

Collaboration


Dive into the Lixin Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai-Quan Mao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chun Wang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Xilong Wu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yanli Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yundi Wu

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge