Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liya Su is active.

Publication


Featured researches published by Liya Su.


PLOS ONE | 2007

On the Action of Methotrexate and 6-Mercaptopurine on M. avium Subspecies paratuberculosis

Robert J. Greenstein; Liya Su; Vahram Haroutunian; Azra Shahidi; Sheldon T. Brown

Background Clinical improvement in inflammatory bowel disease (IBD) treated with methotrexate and 6-mercaptopurine (6-MP) is associated with a decrease in pro-inflammatory cytokines. This has been presumed to indicate the mechanism of action of methotrexate and 6-MP. Although controversial, there are increasingly compelling data that Mycobacterium avium subspecies paratuberculosis (MAP) may be an etiological agent in some or all of IBD. We hypothesized that the clinical efficacy of methotrexate and 6-MP in IBD may be to simply inhibit the growth of MAP. Methodology The effect on MAP growth kinetics by methotrexate and 6-MP were evaluated in cell culture of two strains each of MAP and M. avium using a radiometric (14CO2 BACTEC®) detection system that quantifies mycobacterial growth as arbitrary “growth index units” (GI). Efficacy data are presented as “percent decrease in cumulative GI” (% −ΔcGI). Principal Findings The positive control antibiotic (clarithromycin) has ≥85% −ΔcGI at a concentration of 0.5 µg/ml. The negative control (ampicillin) has minimal inhibition at 64 µg/ml. MAP ATCC 19698 shows ≥80% −ΔcGI for both agents by 4 µg/ml. With the other three isolates, although more effective than ampicillin, 6-MP is consistently less effective than methotrexate. Conclusions We show that methotrexate and 6-MP inhibit MAP growth in vitro. Each of the four isolates manifests different % −ΔcGI. These data are compatible with the hypothesis that the clinical improvement in patients with IBD treated with methotrexate and 6-MP could be due to treating a MAP infection. The decrease in pro-inflammatory cytokines, thought to be the primary mechanism of action, may simply be a normal, secondary, physiological response. We conclude that henceforth, in clinical studies that evaluate the effect of anti-MAP agents in IBD, the use of methotrexate and 6-MP should be excluded from any control groups.


PLOS ONE | 2007

On the Action of 5-Amino-Salicylic Acid and Sulfapyridine on M. avium including Subspecies paratuberculosis

Robert J. Greenstein; Liya Su; Azra Shahidi; Sheldon T. Brown

Background Introduced in 1942, sulfasalazine (a conjugate of 5-aminosalicylic acid (5-ASA) and sulfapyridine) is the most prescribed medication used to treat “inflammatory” bowel disease (IBD.) Although controversial, there are increasingly compelling data that Mycobacterium avium subspecies paratuberculosis (MAP) may be an etiological agent in some or all of IBD. We have shown that two other agents used in the therapy of IBD (methotrexate and 6-MP) profoundly inhibit MAP growth. We concluded that their most plausible mechanism of action is as antiMAP antibiotics. We herein hypothesize that the mechanism of action of 5-ASA and/or sulfapyridine may also simply be to inhibit MAP growth. Methodology The effect on MAP growth kinetics by sulfasalazine and its components were evaluated in bacterial culture of two strains each of MAP and M. avium, using a radiometric (14CO2 BACTEC®) detection system that quantifies mycobacterial growth as arbitrary “growth index units” (GI). Efficacy data are presented as “percent decrease in cumulative GI” (%−ΔcGI). Principal Findings There are disparate responses to 5-ASA and sulfapyridine in the two subspecies. Against MAP, 5-ASA is inhibitory in a dose-dependent manner (MAP ATCC 19698 46%−ΔcGI at 64 µg/ml), whereas sulfapyridine has virtually no effect. In contrast, against M. avium ATCC 25291, 5-ASA has no effect, whereas sulfapyridine (88%−ΔcGI at 4 µg/ml) is as effective as methotrexate, our positive control (88%−ΔcGI at 4 µg/ml). Conclusions 5-ASA inhibits MAP growth in culture. We posit that, unknowingly, the medical profession has been treating MAP infections since sulfasalazines introduction in 1942. These observations may explain, in part, why MAP has not previously been identified as a human pathogen. We conclude that henceforth in clinical trials evaluating antiMAP agents in IBD, if considered ethical, the use of 5-ASA (as well as methotrexate and 6-MP) should be excluded from control groups.


PLOS ONE | 2008

On the Action of Cyclosporine A, Rapamycin and Tacrolimus on M. avium Including Subspecies paratuberculosis

Robert J. Greenstein; Liya Su; Ramón A. Juste; Sheldon T. Brown

Background Mycobacterium avium subspecies paratuberculosis (MAP) may be zoonotic. Recently the “immuno-modulators” methotrexate, azathioprine and 6-MP and the “anti-inflammatory” 5-ASA have been shown to inhibit MAP growth in vitro. We concluded that their most plausible mechanism of action is as antiMAP antibiotics. The “immunosuppressants” Cyclosporine A, Rapamycin and Tacrolimus (FK 506) treat a variety of “autoimmune” and “inflammatory” diseases. Rapamycin and Tacrolimus are macrolides. We hypothesized that their mode of action may simply be to inhibit MAP growth. Methodology The effect on radiometric MAP 14CO2 growth kinetics of Cyclosporine A, Rapamycin and Tacrolimus on MAP cultured from humans (Dominic & UCF 4) or ruminants (ATCC 19698 & 303) and M. avium subspecies avium (ATCC 25291 & 101) are presented as “percent decrease in cumulative GI” (%-ΔcGI.) Principal Findings The positive control clofazimine has 99%-ΔcGI at 0.5 µg/ml (Dominic). Phthalimide, a negative control has no dose dependent inhibition on any strain. Against MAP there is dose dependent inhibition by the immunosuppressants. Cyclosporine has 97%-ΔcGI by 32 µg/ml (Dominic), Rapamycin has 74%-ΔcGI by 64 µg/ml (UCF 4) and Tacrolimus 43%-ΔcGI by 64 µg/ml (UCF 4) Conclusions We show heretofore-undescribed inhibition of MAP growth in vitro by “immunosuppressants;” the cyclic undecapeptide Cyclosporine A, and the macrolides Rapamycin and Tacrolimus. These data are compatible with our thesis that, unknowingly, the medical profession has been treating MAP infections since 1942 when 5-ASA and subsequently azathioprine, 6-MP and methotrexate were introduced in the therapy of some “autoimmune” and “inflammatory” diseases.


PLOS ONE | 2012

Vitamins A & D Inhibit the Growth of Mycobacteria in Radiometric Culture

Robert J. Greenstein; Liya Su; Sheldon T. Brown

Background The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria. Methods The effect of four fat-soluble vitamins was studied in radiometric Bactec® culture. The vitamins were A (including a precursor and three metabolites,) D, E and K. We evaluated eight strains of three mycobacterial species (four of M. avium subspecies paratuberculosis (MAP), two of M. avium and two of M. tb. complex). Principal Findings Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain. Significance We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity.


International Journal of Infectious Diseases | 2014

Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications

Robert J. Greenstein; Liya Su; Azra Shahidi; William D. Brown; Anya Clifford; Sheldon T. Brown

BACKGROUND The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflammatories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis complex by these agents. METHODS Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D. RESULTS All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes bacteriostatic inhibition of MAP. CONCLUSIONS We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases.


PLOS ONE | 2010

The thioamides methimazole and thiourea inhibit growth of M. avium Subspecies paratuberculosis in culture.

Robert J. Greenstein; Liya Su; Sheldon T. Brown

Background Thyrotoxicosis is conceptualized as an “autoimmune” disease with no accepted infectious etiology. There are increasingly compelling data that another “autoimmune” affliction, Crohn disease, may be caused by Mycobacterium avium subspecies paratuberculosis (MAP). Like M. tb, MAP is systemic. We hypothesized that some cases of thyrotoxicosis may be initiated by a MAP infection. Because other thioamides treat tuberculosis, leprosy and M. avium complex, we hypothesized that a mode of action of some thioamide anti-thyrotoxicosis medications may include MAP growth inhibition. Methods The effect of the thioamides, thiourea, methimazole and 6-propo-2-thiouracil (6-PTU) were studied in radiometric Bactec® culture, on ten strains of three mycobacterial species (six of MAP, two of M. avium and two of M. tb. complex). Data are presented as “cumulative growth index,” (cGI) or “percent decrease in cumulative GI” (%-ΔcGI). Principal Findings Methimazole was the most effective thioamide at inhibiting MAP growth. At 128µg/ml: MAP UCF-4; 65%-ΔcGI & MAP ATCC 19698; 90%-ΔcGI. Thiourea inhibited MAP “Ben” maximally; 70%-ΔcGI. Neither methimazole nor thiourea inhibited M. avium or M. tb. at the doses tested. 6-PTU has no inhibition on any strain studied, although a structurally analogous control, 5-PTU, was the most inhibitory thioamide tested. Significance We show inhibition of MAP growth by the thioamides, thiourea and methimazole in culture. These data are compatible with the hypothesis that these thioamides may have anti-prokaryotic in addition to their well-established eukaryotic actions in thyrotoxic individuals.


BMC Research Notes | 2018

Failure to detect M. avium subspecies paratuberculosis in Johne’s disease using a proprietary fluorescent in situ hybridization assay

Robert J. Greenstein; Liya Su; Peter S. Fam; J.R. Stabel; Sheldon T. Brown

ObjectivesMycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease in ruminants. The “gold standard” of MAP detection is by culture, DNA sequencing possibly supplemented by identification of Ziehl–Neelsen positive mycobacteria. The purpose of this study was to evaluate a proprietary (Affymetrix™ RNA view®) fluorescent in situ hybridization (FISH) assay for MAP RNA. Intestine from a steer with documented Johne’s disease was assayed according to the manufacturer’s instructions. Probes were custom designed for MAP and bovine β-actin (as the eukaryotic housekeeping gene) from published genomes. We attempt to prevent false positive signal in the “no-probe” control, by modifying wash solutions, using recommended hydrochloric acid titration and different fluorescent filters (TritC for Texas Red and “Hope” for Cy-5).ResultsRepetitively, false positive signal was observed in our “no probe” negative control. Attempts to correct this according to the manufacturers suggestions, and with multiple derivative techniques have been unsuccessful. It is concluded that when performed according to manufactures instruction and with multiple variations on the manufactures recommended suggestions to correct for false positive signal, that the Affymetrix™ RNA view® cannot be used to detect MAP in pre-frozen intestine of cattle with Johne’s disease.


Gut Pathogens | 2009

Monensin causes dose dependent inhibition of Mycobacterium avium subspecies paratuberculosis in radiometric culture.

Robert J. Greenstein; Liya Su; Robert H. Whitlock; Sheldon T. Brown


International Journal of Infectious Diseases | 2009

On the effect of thalidomide on Mycobacterium avium subspecies paratuberculosis in culture

Robert J. Greenstein; Liya Su; Sheldon T. Brown


Digestive Diseases and Sciences | 2011

Growth of M. avium Subspecies Paratuberculosis in Culture Is Enhanced by Nicotinic Acid, Nicotinamide, and α and β Nicotinamide Adenine Dinucleotide

Robert J. Greenstein; Liya Su; Sheldon T. Brown

Collaboration


Dive into the Liya Su's collaboration.

Top Co-Authors

Avatar

Sheldon T. Brown

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Robert J. Greenstein

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

J.R. Stabel

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vahram Haroutunian

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge