Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liya Yuan is active.

Publication


Featured researches published by Liya Yuan.


Oncogene | 2007

Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy

Liya Yuan; Matthew Siegel; Kihang Choi; Chaitan Khosla; C. R. Miller; E. N. Jackson; David Piwnica-Worms; Keith M. Rich

Transglutaminase 2 (TG2, a.k.a. tissue transglutaminase) belongs to a family of transglutaminase enzymes that stabilize proteins by affecting covalent crosslinking via formation of amide bonds. Cell surface TG2 is directly involved as an adhesive receptor in cell–extracellular matrix (ECM) interactions. Here, we show that TG2 activity is elevated in glioblastomas compared with non-neoplastic brain. Immunofluorescent studies showed increased staining of fibronectin colocalized with TG2 in the ECM in glioblastomas. In addition, small clusters of invading human glioblastoma cells present in non-neoplastic brain parenchyma secrete high levels of TG2 and fibronectin that distinguish them from normal brain stroma. Downregulation of TG2 in U87MG glioblastoma cells with RNAi demonstrated decreased assembly of fibronectin in the ECM. Treatment with KCC009 blocked the remodeling of fibronectin in the ECM in glioblastomas in both in vitro and in vivo studies. KCC009 treatment in mice harboring orthotopic glioblastomas (DBT-FG) sensitized the tumors to N,N′-bis(2-chloroethyl)-N-nitrosourea chemotherapy, as measured by reduced bioluminescence, increased apoptosis and prolonged survival. The ability of KCC009 to interfere with the permissive remodeling of fibronectin in the ECM in glioblastomas suggests a novel target to enhance sensitivity to chemotherapy directed not only at the tumor mass, but also invading glioblastoma cells.


Molecular Cancer Therapeutics | 2005

Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas

Liya Yuan; Kihang Choi; Chaitan Khosla; Xiao Zheng; Michael R. Chicoine; Keith M. Rich

Tissue transglutaminase 2 belongs to a family of transglutaminase proteins that confers mechanical resistance from proteolysis and stabilizes proteins. Transglutaminase 2 promotes transamidation between glutamine and lysine residues with the formation of covalent linkages between proteins. Transglutaminase 2 also interacts and forms complexes with proteins important in extracellular matrix organization and cellular adhesion. We have identified the novel finding that treatment of glioblastoma cells with transglutaminase 2 inhibitors promotes cell death and enhances sensitivity to chemotherapy. Treatment with either the competitive transglutaminase 2 inhibitor, monodansylcadaverine, or with highly specific small-molecule transglutaminase 2 inhibitors, KCA075 or KCC009, results in induction of apoptosis in glioblastoma cells. Treatment with these transglutaminase 2 inhibitors resulted in markedly decreased levels of the prosurvival protein, phosphorylated Akt, and its downstream targets. These changes promote a proapoptotic profile with altered levels of multiple intracellular proteins that determine cell survival. These changes include decreased levels of the antiapoptotic proteins, survivin, phosphorylated Bad, and phosphorylated glycogen synthetase kinase 3β (GSK-3β), and increased levels of the proapoptotic BH3-only protein, Bim. In vivo studies with s.c. murine DBT glioblastoma tumors treated with transglutaminase 2 inhibitors combined with the chemotherapeutic agent, N-N′-bis (2-chloroethyl)-N-nitrosourea (BCNU), decreased tumor size based on weight by 50% compared with those treated with BCNU alone. Groups treated with transglutaminase 2 inhibitors showed an increased incidence of apoptosis determined with deoxynucleotidyl transferase–mediated biotin nick-end labeling staining. These studies identify inhibition of transglutaminase 2 as a potential target to enhance cell death and chemosensitivity in glioblastomas.


Clinical Cancer Research | 2014

Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain

Xiaoyu Jiang; John A. Engelbach; Liya Yuan; J Cates; Feng Gao; Robert E. Drzymala; Dennis E. Hallahan; Keith M. Rich; Robert E. Schmidt; Joseph J. H. Ackerman; Joel R. Garbow

Purpose: To quantify the effectiveness of anti-VEGF antibodies (bevacizumab and B20-4.1.1) as mitigators of radiation-induced, central nervous system (brain) necrosis in a mouse model. Experimental Design: Cohorts of mice were irradiated with single-fraction 50- or 60-Gy doses of radiation targeted to the left hemisphere (brain) using the Leksell Perfexion Gamma Knife. The onset and progression of radiation necrosis were monitored longitudinally by in vivo, small-animal MRI, beginning 4 weeks after irradiation. MRI-derived necrotic volumes for antibody (Ab)-treated and untreated mice were compared. MRI results were supported by correlative histology. Results: Hematoxylin and eosin–stained sections of brains from irradiated, non–Ab-treated mice confirmed profound tissue damage, including regions of fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, loss of neurons, and edema. Treatment with the murine anti-VEGF antibody B20-4.1.1 mitigated radiation-induced changes in an extraordinary, highly statistically significant manner. The development of radiation necrosis in mice under treatment with bevacizumab (a humanized anti-VEGF antibody) was intermediate between that for B20-4.1.1–treated and non–Ab-treated animals. MRI findings were validated by histologic assessment, which confirmed that anti-VEGF antibody treatment dramatically reduced late-onset necrosis in irradiated brain. Conclusions: The single-hemispheric irradiation mouse model, with longitudinal MRI monitoring, provides a powerful platform for studying the onset and progression of radiation necrosis and for developing and testing new therapies. The observation that anti-VEGF antibodies are effective mitigants of necrosis in our mouse model will enable a wide variety of studies aimed at dose optimization and timing and mechanism of action with direct relevance to ongoing clinical trials of bevacizumab as a treatment for radiation necrosis. Clin Cancer Res; 20(10); 2695–702. ©2014 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2016

An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma

Amit D. Gujar; Son Le; Diane D. Mao; David Dadey; Alice Turski; Yo Sasaki; Diane J. Aum; Jingqin Luo; Sonika Dahiya; Liya Yuan; Keith M. Rich; Jeffrey Milbrandt; Dennis E. Hallahan; Hiroko Yano; David D. Tran; Albert H. Kim

Significance Glioblastoma, the most common primary malignant brain tumor in adults, remains challenging despite multimodality therapy, necessitating the discovery of new therapies. Nicotinamide adenine dinucleotide (NAD+) plays a pivotal role in cancer cell metabolism, but how NAD+ impacts functional signaling events in glioblastoma is not well understood. We provide clinical evidence that high expression of NAMPT, the rate-limiting step in NAD+ biosynthesis, in glioblastoma tumors is associated with poor overall survival in patients, and demonstrate NAMPT and NAD+ are required for the maintenance of patient-derived glioblastoma stem-like cells (GSCs). Moreover, we delineate a NAD+-dependent transcriptional program that governs GSC self-renewal and dictates the radiation resistance of these cells. These findings identify potential new therapeutic avenues for the treatment of glioblastoma. Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD+). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD+ levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD+-dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix–loop–helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD+ metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.


The Journal of Nuclear Medicine | 2013

18F-AFETP, 18F-FET, and 18F-FDG Imaging of Mouse DBT Gliomas

Kiran Kumar Solingapuram Sai; Chaofeng Huang; Liya Yuan; Dong Zhou; David Piwnica-Worms; Joel R. Garbow; John A. Engelbach; Robert H. Mach; Keith M. Rich; Jonathan McConathy

The goal of this study was to evaluate the 18F-labeled nonnatural amino acid (S)-2-amino-3-[1-(2-18F-fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (18F-AFETP) as a PET imaging agent for brain tumors and to compare its effectiveness with the more-established tracers O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) and 18F-FDG in a murine model of glioblastoma. The tracer 18F-AFETP is a structural analog of histidine and is a lead compound for imaging cationic amino acid transport, a relatively unexplored target for oncologic imaging. Methods: 18F-AFETP was prepared using the click reaction. BALB/c mice with intracranially implanted delayed brain tumor (DBT) gliomas (n = 4) underwent biodistribution and dynamic small-animal PET imaging for 60 min after intravenous injection of 18F-AFETP. Tumor and brain uptake of 18F-AFETP were compared with those of 18F-FDG and 18F-FET through small-animal PET analyses. Results: 18F-AFETP demonstrated focally increased uptake in tumors with good visualization. Peak tumor uptake occurred within 10 min of injection, with stable or gradual decrease over time. All 3 tracers demonstrated relatively high uptake in the DBTs throughout the study. At late time points (47.5–57.5 min after injection), the average standardized uptake value with 18F-FDG (1.9 ± 0.1) was significantly greater than with 18F-FET (1.1 ± 0.1) and 18F-AFETP (0.7 ± 0.2). The uptake also differed substantially in normal brain, with significant differences in the standardized uptake values at late times among 18F-FDG (1.5 ± 0.2), 18F-FET (0.5 ± 0.05), and 18F-AFETP (0.1 ± 0.04). The resulting average tumor-to-brain ratio at the late time points was significantly higher for 18F-AFETP (7.5 ± 0.1) than for 18F-FDG (1.3 ± 0.1) and 18F-FET (2.0 ± 0.3). Conclusion: 18F-AFETP is a promising brain tumor imaging agent, providing rapid and persistent tumor visualization, with good tumor–to–normal-brain ratios in the DBT glioma model. High tumor-to-brain, tumor-to-muscle, and tumor-to-blood ratios were observed at 30 and 60 min after injection, with higher tumor-to-brain ratios than obtained with 18F-FET or 18F-FDG. These results support further development and evaluation of 18F-AFETP and its derivatives for tumor imaging.


International Journal of Radiation Oncology Biology Physics | 2014

Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

Carlos J. Perez-Torres; John A. Engelbach; J Cates; Dinesh Thotala; Liya Yuan; Robert E. Schmidt; Keith M. Rich; Robert E. Drzymala; Joseph J. H. Ackerman; Joel R. Garbow

PURPOSE Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. METHODS AND MATERIALS Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) is obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone-glioma versus irradiation - and then in a combined irradiated glioma model. RESULTS MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. CONCLUSIONS ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.


Journal of Neuro-oncology | 2008

Tissue transgluaminase 2 expression in meningiomas

Liya Yuan; Amir Behdad; Matthew Siegel; Chaitan Khosla; Keith M. Rich

Meningiomas are common intracranial tumors that occur in extra-axial locations, most often over the cerebral convexities or along the skull-base. Although often histologically benign these tumors frequently present challenging clinical problems. Primary clinical management of patients with symptomatic tumors is surgical resection. Radiation treatment may arrest growth or delay recurrence of these tumors, however, meningioma cells are generally resistant to apoptosis after treatment with radiation. Tumor cells are known to alter their expression of proteins that interact in the ECM to provide signals important in tumor progression. One such protein, fibronectin, is expressed in elevated levels in the ECM in a number of tumors including meningiomas. We recently reported that levels of both extracellular fibronectin and tissue transglutaminase 2 (TG2) were increased in glioblastomas. We examined the expression of fibronectin and its association TG2 in meningiomas. Both fibronectin and TG2 were strongly expressed in all meningiomas studied. TG2 activity was markedly elevated in meningiomas, and TG2 was found to co-localize with fibronectin. Treatment of meningiomas with the small molecule TG2 inhibitor, KCC009, inhibited the binding of TG2 to fibronectin and blocked disposition of linear strands of fibronectin in the ECM. KCC009 treatment promoted apoptosis and enhanced radiation sensitivity both in cultured IOMM-Lee meningioma cells and in meningioma tumor explants. These findings support a potential protective role for TG2 in meningiomas.


PLOS ONE | 2015

A Gamma-Knife-Enabled Mouse Model of Cerebral Single-Hemisphere Delayed Radiation Necrosis

Xiaoyu Jiang; Liya Yuan; John A. Engelbach; J Cates; Carlos J. Perez-Torres; Feng Gao; Dinesh Thotala; Robert E. Drzymala; Robert E. Schmidt; Keith M. Rich; Dennis E. Hallahan; Joseph J. H. Ackerman; Joel R. Garbow

Purpose To develop a Gamma Knife-based mouse model of late time-to-onset, cerebral radiation necrosis (RN) with serial evaluation by magnetic resonance imaging (MRI) and histology. Methods and Materials Mice were irradiated with the Leksell Gamma Knife® (GK) PerfexionTM (Elekta AB; Stockholm, Sweden) with total single-hemispheric radiation doses (TRD) of 45- to 60-Gy, delivered in one to three fractions. RN was measured using T2-weighted MR images, while confirmation of tissue damage was assessed histologically by hematoxylin & eosin, trichrome, and PTAH staining. Results MRI measurements demonstrate that TRD is a more important determinant of both time-to-onset and progression of RN than fractionation. The development of RN is significantly slower in mice irradiated with 45-Gy than 50- or 60-Gy, where RN development is similar. Irradiated mouse brains demonstrate all of the pathologic features observed clinically in patients with confirmed RN. A semi-quantitative (0 to 3) histologic grading system, capturing both the extent and severity of injury, is described and illustrated. Tissue damage, as assessed by a histologic score, correlates well with total necrotic volume measured by MRI (correlation coefficient = 0.948, with p<0.0001), and with post-irradiation time (correlation coefficient = 0.508, with p<0.0001). Conclusions Following GK irradiation, mice develop late time-to-onset cerebral RN histology mirroring clinical observations. MR imaging provides reliable quantification of the necrotic volume that correlates well with histologic score. This mouse model of RN will provide a platform for mechanism of action studies, the identification of imaging biomarkers of RN, and the development of clinical studies for improved mitigation and neuroprotection.


Journal of Neuro-oncology | 2011

Novel chemo-sensitizing agent, ERW1227B, impairs cellular motility and enhances cell death in glioblastomas

Liya Yuan; Tracy C. Holmes; R. Edward Watts; Chaitan Khosla; Tom Broekelmann; Robert P. Mecham; Hong Zheng; Ew Izaguirre; Keith M. Rich

Glioblastomas display variable phenotypes that include increased drug-resistance associated with enhanced migratory and anti-apoptotic characteristics. These shared characteristics contribute to failure of clinical treatment regimens. Identification of novel compounds that promote cell death and impair cellular motility is a logical strategy to develop more effective clinical protocols. We recently described the ability of the small molecule, KCC009, a tissue transglutaminase (TG2) inhibitor, to sensitize glioblastoma cells to chemotherapy. In the current study, we synthesized a series of related compounds that show variable ability to promote cell death and impair motility in glioblastomas, irrespective of their ability to inhibit TG2. Each compound has a 3-bromo-4,5-dihydroisoxazole component that presumably reacts with nucleophilic cysteine thiol residues in the active sites of proteins that have an affinity to the small molecule. Our studies focused on the effects of the compound, ERW1227B. Treatment of glioblastoma cells with ERW1227B was associated with both down-regulation of the PI-3 kinase/Akt pathway, which enhanced cell death; as well as disruption of focal adhesive complexes and intracellular actin fibers, which impaired cellular mobility. Bioassays as well as time-lapse photography of glioblastoma cells treated with ERW1227B showed cell death and rapid loss of cellular motility. Mice studies with in vivo glioblastoma models demonstrated the ability of ERW1227B to sensitize tumor cells to cell death after treatment with either chemotherapy or radiation. The above findings identify ERW1227B as a potential novel therapeutic agent in the treatment of glioblastomas.


International Journal of Radiation Oncology Biology Physics | 2014

A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

Xiaoyu Jiang; Carlos J. Perez-Torres; Dinesh Thotala; John A. Engelbach; Liya Yuan; J Cates; Feng Gao; Robert E. Drzymala; Keith M. Rich; Robert E. Schmidt; Joseph J. H. Ackerman; Dennis E. Hallahan; Joel R. Garbow

PURPOSE To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. METHODS AND MATERIALS Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. RESULTS Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. CONCLUSIONS The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.

Collaboration


Dive into the Liya Yuan's collaboration.

Top Co-Authors

Avatar

Keith M. Rich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan McConathy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joel R. Garbow

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John A. Engelbach

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos J. Perez-Torres

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chaofeng Huang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert E. Schmidt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Aixiao Li

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge