Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liyan Qiu is active.

Publication


Featured researches published by Liyan Qiu.


International Journal of Pharmaceutics | 2009

Biodegradable poly(ɛ-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system

Xiawei Wei; Changyang Gong; Maling Gou; ShaoZhi Fu; QingFa Guo; Shuai Shi; Feng Luo; Gang Guo; Liyan Qiu; Zhiyong Qian

Poly(epsilon-caprolactone)-poly(ethylene glycol) (PCL-PEG) copolymers are important synthetic biomedical materials with amphiphilicity, controlled biodegradability, and great biocompatibility. They have great potential application in the fields of nanotechnology, tissue engineering, pharmaceutics, and medicinal chemistry. This review introduced several aspects of PCL-PEG copolymers, including synthetic chemistry, PCL-PEG micro/nanoparticles, PCL-PEG hydrogels, and physicochemical and toxicological properties.


Journal of Controlled Release | 2013

Smart ligand: Aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy

Xin Li; Qinghe Zhao; Liyan Qiu

Aptamers are a class of oligonucleotides that can specifically bind to different targets with high affinity. Since their discovery in 1980s, aptamers have attracted considerable interests in medical applications. So far, initial research using aptamers as delivery systems has produced exciting results. In this review, we summarize recent progress in aptamer-mediated chemotherapeutic drug and siRNA delivery systems in tumor treatment. With regard to chemotherapeutic drugs, the 2 main methods for targeted delivery using aptamers are as follows: aptamer-drug systems (in which aptamers directly deliver the drug both as a carrier and as a ligand) and aptamer-nanoparticles systems (in which nanoparticles function together with aptamers for targeted delivery of drugs). For delivery of siRNA, aptamers can be utilized by the following ways to facilitate targeting: (1) linked by a connector; (2) form a chimera; and (3) combined with nanoparticles. In co-delivery system, the advantages associated with the use of aptamers are beginning to become apparent also. Here, the challenges and new perspectives in the field of aptamer-mediated delivery have been discussed.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

β-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery

Liyan Qiu; Rong Juan Wang; Cheng Zheng; Yi Jin; Le Qun Jin

AIM Delivery of doxorubicin could be achieved by a novel micellar system based on beta-cyclodextrin-centered star-shaped amphiphilic polymers (sPEL/CD). This study specifically explored the effect of polylactide segments in sPEL/CD on various micelle properties, such as the critical micelle concentration, size, drug loading, cytotoxicity and drug resistance reversing effect. METHOD The sPEL/CD was synthesized by the arm-first method. The critical micelle concentrations of polymeric micelles were determined by fluorescence spectrophotometry using pyrene as a probe. The oil/water method was applied to prepare doxorubicin-loaded micelles. 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide, confocal laser-scanning microscopy and flow cytometry were used to examine cell cytotoxicity and cellular uptake of the doxorubicin-loaded micelles. Finally, rhodamine-123 cellular uptake was determined to evaluate the polymer action on MCF-7 and MCF-7/ADR cells. RESULTS All polymers exhibited low cytotoxicity and their micelles had a desirable release-acceleration pH (pH 5.0) for cytoplasmic drug delivery. With the introduction of polylactide into the polymer, the micelle critical micelle concentration can be effectively decreased and the drug-loading content was enhanced. Most importantly, the drug resistance of MCF-7/ADR cells was significantly reversed via the interaction between polymer and Pgp. Therefore, this type of polymer has potential superiority for cancer therapy.


International Journal of Pharmaceutics | 2008

Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method.

Liyan Qiu; Na Jing; Yi Jin

This study developed an active loading method for encapsulating chloroquine diphosphate (CQ) into liposomes. The effects of different formulation factors on the encapsulation efficiency (EE) and the size of CQ liposomes were investigated. These factors included the internal phase of liposomes, the external phase of liposomes, the ratio of drug to soybean phosphatidylcholine (drug/SPC), the ratio of cholesterol to soybean phosphatidylcholine (Chol/SPC), and the incubation temperature and time. The EE (93%) was obtained when using drug/SPC (1:50 mass ratio), SPC/Chol (1:5 mass ratio) at 0.10 M citrate-sodium citrate buffer (pH 3.6). As 5 mol% methoxypoly(ethylene glycol)(2,000) cholesteryl succinate (CHS-PEG(2000)) or distearoyl phosphatidylethanolamine-poly (ethylene glycol)(2,000) (DSPE-PEG(2000)) was added, the size of particle was reduced and the EE was improved. Freeze-drying with 5% trehalose as a cryoprotectant was carried out to achieve long-term stability. The drug release studies were performed in vitro simulating the desired application conditions, such as physiological fluids (pH 7.4), tumor tissues (pH 6.5) and endosomal compartments (pH 5.5). The release of CQ from the liposomes prepared via remote loading showed the significant pH-sensitivity and retention properties, which favored the application of liposomal CQ at tumor tissues and endosomal compartments.


International Journal of Pharmaceutics | 2009

Self-assembled honokiol-loaded micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) copolymer

XiaWei Wei; Changyang Gong; Shuai Shi; ShaoZhi Fu; Ke Men; Shi Zeng; XiuLing Zheng; Maling Gou; Lijuan Chen; Liyan Qiu; Zhiyong Qian

Self-assembled polymeric micelles are widely applied in drug delivery system (DDS). In this study, honokiol (HK) loaded micelles were prepared from biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) copolymers. Micelles were prepared by self-assembly of triblock copolymer PCEC in distilled water triggered by its amphiphilic character without any organic solvent. Drug loading and encapsulation efficiency were determined by adjusting the weight ratio of HK and PCEC. The particle size and zeta potential distribution of obtained micelles were determined using Malvern laser particle sizer, and spherical geometry were observed on atomic force microscope (AFM). Otherwise, the thermo-sensitivity of honokiol-loaded micelles was monitored. And the cytotoxicity results of drug loaded micelles showed that the encapsulated honokiol remained potent antitumor effect. Moreover, in vitro release profile demonstrated a significant difference between rapid release of free honokiol and much slower and sustained release of HK-loaded micelles. These results suggested that we have successfully prepared honokiol-loaded micelles in an improved method which is safer and more efficient. The prepared micelles might be potential carriers for honokiol delivery in cancer chemotherapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy

Jing Xu; Qinghe Zhao; Yangmin Jin; Liyan Qiu

UNLABELLED Breast cancer remains one of the most common cancers for females. Drug delivery based on cancer nanotechnology could improve the performance of some chemotherapeutic medicines already used in clinic. The emergence of polymersomes provided the potential to encapsulate hydrophobic/hydrophilic drugs. By modifying the weight ratio of methoxy-poly (ethylene glycol) (mPEG) chain to ethyl-p-aminobenzoate (EAB) side group, a series of amphiphilic graft polyphosphazenes (PEPs) was prepared. PEP can be tuned from micelles to polymersomes with the decrease of mPEG content via dialysis. Either hydrophilic doxorubicin hydrochloride (DOX·HCl) or hydrophobic doxorubicin base (DOX) could be encapsulated into PEP polymersomes with high payload and high encapsulation efficiency due to the strong intermolecular interaction with PEP. Compared with free DOX·HCl administration, in vivo investigation in growth inhibition of MCF-7 xenograft tumors in nude mice demonstrated that PEP polymersomes could enhance life safety without compromise of therapeutic efficacy, especially DOX·HCl loaded delivery system. FROM THE CLINICAL EDITOR In this preclinical study, polymerosomes based on PEPs were investigated as doxorubicin delivery systems, demonstrating similar efficacy but less toxicity compared to standard delivery methods.


Journal of Colloid and Interface Science | 2011

Polyphosphazene nanoparticles for cytoplasmic release of doxorubicin with improved cytotoxicity against Dox-resistant tumor cells

Cheng Zheng; Jing Xu; Xiaping Yao; Jian Xu; Liyan Qiu

This study involved the construction of self-assembled nanoparticles from novel pH-sensitive amphiphilic polyphosphazenes. These nanoparticles provide fast pH-responsive drug release and have the capability to disturb endosomal membranes. The polymers were prepared by linking N,N-diisopropylethylenediamine (DPA) onto a backbone of PEGylated polyphosphazene. In vitro cell viability measurements demonstrated the superior efficacy of these pH-responsive nanoparticles over free doxorubicin (Dox): the IC50 was over 60 times lower than that of free Dox against a Dox-resistant cell line. Using flow cytometry and confocal microscopy, the further investigation of the intracellular distribution of Dox and fluorescent probes provided evidence that, upon internalization by cells through endocytic pathways, the pH-sensitive polymer would disrupt membranes of endosomal compartments, releasing the cargo drugs into the cytoplasm in a burst-like manner. This resulted in reduced likelihood of drug efflux via exocytosis, and reversal of the drug resistance of the tumor cells. Generally, the pH-responsive nanoparticles designed in this study have achieved their potential as a drug delivery system for tumor therapy applications.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles.

Xin Li; Yang Yu; Qian Ji; Liyan Qiu

Aptamers are single-stranded RNA or DNA ligands that can specifically bind to various molecular targets with high affinity. Owing to this unique character, they have become increasingly attractive in the field of drug delivery. In this study, we developed a multifunctional composite micelle (CM) with surface modification of aptamer AS1411 (Ap) for targeted delivery of doxorubicin (DOX) to human breast tumors. This binary mixed system consisting of AS1411 modified Pluronic F127 and beta-cyclodextrin-linked poly(ethylene glycol)-b-polylactide could enhance DOX-loading capacity and increase micelle stability. Cellular uptake of CM-Ap was found to be higher than that of untargeted CM due to the nucleolin-mediated endocytosis effect. In vivo study in MCF-7 tumor-bearing mice demonstrated that the AS1411-functionalized composite micelles showed prolonged circulation time in blood, enhanced accumulation in tumor, improved antitumor activity, and decreased cardiotoxicity. In conclusion, aptamer-conjugated multifunctional composite micelles could be a potential delivery vehicle for cancer therapy.


International Journal of Pharmaceutics | 2013

Folate-modified poly(2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery.

Liyan Qiu; Lu Yan; Lu Zhang; Yangmin Jin; Qing-He Zhao

The transmembrane transport of drug loaded micelles to intracellular compartment is quite crucial for efficient drug delivery. In the current study, we investigated the cellular internalization and anticancer activity of doxorubicin loaded micelles with folate modified stealthy PEOz corona. Folate-decorated micelles incorporating doxorubicin were characterized for particle size, degree of folate decoration, drug loading content and encapsulation efficiency, morphology, and surface charge. The targeting capability and cell viability were assessed using HeLa, KB, A549 and MCF-7/ADR cell lines. In vitro study clearly illustrated the folate receptor (FR) mediated targeting of FA modified micelles to FR-positive human HeLa, KB and MCF-7/ADR cells, while specific delivery to FR-negative A549 cells was not apparently increased at the same experimental conditions. Cytotoxicity assay showed 60% and 58% decrease in IC50 values for HeLa and KB cells, while only a slight decrease for A549 cells, following treatment with folate modified formulations. The enhanced intracellular delivery of FA modified micelles in MCF-7/ADR cells was also observed. In vivo antitumor tests revealed DOX entrapped FA-PEOz-PCL micelles effectively inhibited the tumor growth and reduced the toxicity to mice compared with free DOX. The current study showed that the targeted nano-vector improved cytotoxicity of DOX and suggested that this novel PEOz endowed stealthy micelle system held great promise in tumor targeted therapy.


International Journal of Pharmaceutics | 2001

Design of a core-shelled polymer cylinder for potential programmable drug delivery.

Liyan Qiu; Kangjie Zhu

A cylindrical dosage form comprising a laminated composite polymer core and a hydrophobic polycarbonate coating was proposed for programmable drug delivery. In the core, poly[(ethyl glycinate) (benzyl amino acethydroxamate) phosphazene] was synthesized as drug-loaded layers for its strong pH-sensitive degradation (eroded after 1.5 days at pH 7.4 and more than 20 days at pH 5.0 and 6.0). Poly(sebacic anhydride)-b-polyethylene glycol or poly(sebacic anhydride-co-trimellitylimidoglycine)-b-poly(ethylene glycol) was selected as isolating layers for their good processing properties at room temperature and suitable erosion duration. The in vitro drug release studies of these devices were conducted under physiological conditions (pH 7.4). The results revealed that the model drugs (brilliant blue, FITC-dextran, myoglobin) could be released in typical pulsatile manner. Moreover, the duration time of drug release (24-40 h) and the lag time (18-118 h) could be separately regulated by the mass of polyphosphazene and the type or mass of polyanhydride. In this experiment, the cooperative effect of polyanhydrides and pH-sensitive degradable polyphosphazene was specially demonstrated, which offers a new idea to develop a programmable drug delivery system for single dose vaccine and other related applications.

Collaboration


Dive into the Liyan Qiu's collaboration.

Top Co-Authors

Avatar

Yi Jin

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Zhang

First Affiliated Hospital of Wenzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge